Design and train an LSTM autoencoder using the Keras API with Tensorflow 2 as the backend to detect anomalies (sudden price changes) in the S&P 500 index.
- Project Overview and Import Libraries
- Load and Inspect the S&P 500 Index Data
- Data Preprocessing
- Temporalize Data and Create Training and Test Splits
- Build an LSTM Autoencoder
- Train the Autoencoder
- Plot Metrics and Evaluate the Model
- Detect Anomalies in the S&P 500 Index Data