Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] feat: #1550 Azure, Bard, Claude, ChatGLM, Qwen, Spark #2603

Merged
merged 2 commits into from
Apr 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions app/api/openai/[...path]/route.ts
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
import { type OpenAIListModelResponse } from "@/app/client/platforms/openai";
import { type OpenAI } from "@/app/client/openai/types";
import { getServerSideConfig } from "@/app/config/server";
import { OpenaiPath } from "@/app/constant";
import { prettyObject } from "@/app/utils/format";
import { NextRequest, NextResponse } from "next/server";
import { auth } from "../../auth";
import { requestOpenai } from "../../common";

const ALLOWD_PATH = new Set(Object.values(OpenaiPath));
const ALLOWD_PATH = new Set(Object.values(OpenaiPath) as string[]);

function getModels(remoteModelRes: OpenAIListModelResponse) {
function getModels(remoteModelRes: OpenAI.ListModelResponse) {
const config = getServerSideConfig();

if (config.disableGPT4) {
Expand Down Expand Up @@ -56,8 +56,8 @@ async function handle(
const response = await requestOpenai(req);

// list models
if (subpath === OpenaiPath.ListModelPath && response.status === 200) {
const resJson = (await response.json()) as OpenAIListModelResponse;
if (subpath === OpenaiPath.ListModel && response.status === 200) {
const resJson = await response.json();
const availableModels = getModels(resJson);
return NextResponse.json(availableModels, {
status: response.status,
Expand Down
29 changes: 29 additions & 0 deletions app/client/anthropic/config.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
export const AnthropicConfig = {
model: {
model: "claude-instant-1",
summarizeModel: "claude-instant-1",

max_tokens_to_sample: 8192,
temperature: 0.5,
top_p: 0.7,
top_k: 5,
},
provider: {
name: "Anthropic" as const,
endpoint: "https://api.anthropic.com",
apiKey: "",
customModels: "",
version: "2023-06-01",

models: [
{
name: "claude-instant-1",
available: true,
},
{
name: "claude-2",
available: true,
},
],
},
};
233 changes: 233 additions & 0 deletions app/client/anthropic/index.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
import { ModelConfig, ProviderConfig } from "@/app/store";
import { createLogger } from "@/app/utils/log";
import { getAuthKey } from "../common/auth";
import { API_PREFIX, AnthropicPath, ApiPath } from "@/app/constant";
import { getApiPath } from "@/app/utils/path";
import { trimEnd } from "@/app/utils/string";
import { Anthropic } from "./types";
import { ChatOptions, LLMModel, LLMUsage, RequestMessage } from "../types";
import { omit } from "@/app/utils/object";
import {
EventStreamContentType,
fetchEventSource,
} from "@fortaine/fetch-event-source";
import { prettyObject } from "@/app/utils/format";
import Locale from "@/app/locales";
import { AnthropicConfig } from "./config";

export function createAnthropicClient(
providerConfigs: ProviderConfig,
modelConfig: ModelConfig,
) {
const anthropicConfig = { ...providerConfigs.anthropic };
const logger = createLogger("[Anthropic]");
const anthropicModelConfig = { ...modelConfig.anthropic };

return {
headers() {
return {
"Content-Type": "application/json",
"x-api-key": getAuthKey(anthropicConfig.apiKey),
"anthropic-version": anthropicConfig.version,
};
},

path(path: AnthropicPath): string {
let baseUrl: string = anthropicConfig.endpoint;

// if endpoint is empty, use default endpoint
if (baseUrl.trim().length === 0) {
baseUrl = getApiPath(ApiPath.Anthropic);
}

if (!baseUrl.startsWith("http") && !baseUrl.startsWith(API_PREFIX)) {
baseUrl = "https://" + baseUrl;
}

baseUrl = trimEnd(baseUrl, "/");

return `${baseUrl}/${path}`;
},

extractMessage(res: Anthropic.ChatResponse) {
return res.completion;
},

beforeRequest(options: ChatOptions, stream = false) {
const ClaudeMapper: Record<RequestMessage["role"], string> = {
assistant: "Assistant",
user: "Human",
system: "Human",
};

const prompt = options.messages
.map((v) => ({
role: ClaudeMapper[v.role] ?? "Human",
content: v.content,
}))
.map((v) => `\n\n${v.role}: ${v.content}`)
.join("");

if (options.shouldSummarize) {
anthropicModelConfig.model = anthropicModelConfig.summarizeModel;
}

const requestBody: Anthropic.ChatRequest = {
prompt,
stream,
...omit(anthropicModelConfig, "summarizeModel"),
};

const path = this.path(AnthropicPath.Chat);

logger.log("path = ", path, requestBody);

const controller = new AbortController();
options.onController?.(controller);

const payload = {
method: "POST",
body: JSON.stringify(requestBody),
signal: controller.signal,
headers: this.headers(),
mode: "no-cors" as RequestMode,
};

return {
path,
payload,
controller,
};
},

async chat(options: ChatOptions) {
try {
const { path, payload, controller } = this.beforeRequest(
options,
false,
);

controller.signal.onabort = () => options.onFinish("");

const res = await fetch(path, payload);
const resJson = await res.json();

const message = this.extractMessage(resJson);
options.onFinish(message);
} catch (e) {
logger.error("failed to chat", e);
options.onError?.(e as Error);
}
},

async chatStream(options: ChatOptions) {
try {
const { path, payload, controller } = this.beforeRequest(options, true);

const context = {
text: "",
finished: false,
};

const finish = () => {
if (!context.finished) {
options.onFinish(context.text);
context.finished = true;
}
};

controller.signal.onabort = finish;

logger.log(payload);

fetchEventSource(path, {
...payload,
async onopen(res) {
const contentType = res.headers.get("content-type");
logger.log("response content type: ", contentType);

if (contentType?.startsWith("text/plain")) {
context.text = await res.clone().text();
return finish();
}

if (
!res.ok ||
!res.headers
.get("content-type")
?.startsWith(EventStreamContentType) ||
res.status !== 200
) {
const responseTexts = [context.text];
let extraInfo = await res.clone().text();
try {
const resJson = await res.clone().json();
extraInfo = prettyObject(resJson);
} catch {}

if (res.status === 401) {
responseTexts.push(Locale.Error.Unauthorized);
}

if (extraInfo) {
responseTexts.push(extraInfo);
}

context.text = responseTexts.join("\n\n");

return finish();
}
},
onmessage(msg) {
if (msg.data === "[DONE]" || context.finished) {
return finish();
}
const chunk = msg.data;
try {
const chunkJson = JSON.parse(
chunk,
) as Anthropic.ChatStreamResponse;
const delta = chunkJson.completion;
if (delta) {
context.text += delta;
options.onUpdate?.(context.text, delta);
}
} catch (e) {
logger.error("[Request] parse error", chunk, msg);
}
},
onclose() {
finish();
},
onerror(e) {
options.onError?.(e);
},
openWhenHidden: true,
});
} catch (e) {
logger.error("failed to chat", e);
options.onError?.(e as Error);
}
},

async usage() {
return {
used: 0,
total: 0,
} as LLMUsage;
},

async models(): Promise<LLMModel[]> {
const customModels = anthropicConfig.customModels
.split(",")
.map((v) => v.trim())
.filter((v) => !!v)
.map((v) => ({
name: v,
available: true,
}));

return [...AnthropicConfig.provider.models.slice(), ...customModels];
},
};
}
24 changes: 24 additions & 0 deletions app/client/anthropic/types.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
export namespace Anthropic {
export interface ChatRequest {
model: string; // The model that will complete your prompt.
prompt: string; // The prompt that you want Claude to complete.
max_tokens_to_sample: number; // The maximum number of tokens to generate before stopping.
stop_sequences?: string[]; // Sequences that will cause the model to stop generating completion text.
temperature?: number; // Amount of randomness injected into the response.
top_p?: number; // Use nucleus sampling.
top_k?: number; // Only sample from the top K options for each subsequent token.
metadata?: object; // An object describing metadata about the request.
stream?: boolean; // Whether to incrementally stream the response using server-sent events.
}

export interface ChatResponse {
completion: string;
stop_reason: "stop_sequence" | "max_tokens";
model: string;
}

export type ChatStreamResponse = ChatResponse & {
stop?: string;
log_id: string;
};
}
Loading
Loading