Skip to content

Commit

Permalink
add Mem notation for lists (leanprover#12)
Browse files Browse the repository at this point in the history
* add Mem notation for lists

* delete comment
  • Loading branch information
kbuzzard authored Jun 3, 2021
1 parent 302ad90 commit ac54aaa
Showing 1 changed file with 22 additions and 10 deletions.
32 changes: 22 additions & 10 deletions Mathlib/Data/List/Basic.lean
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import Mathlib.Logic.Basic
import Mathlib.Data.Nat.Basic

import Mathlib.Mem
namespace List

/-- The same as append, but with simpler defeq. (The one in the standard library is more efficient,
Expand Down Expand Up @@ -48,31 +48,43 @@ def mem (a : α) : List α → Prop
| [] => False
| (b :: l) => a = b ∨ mem a l

infix:50 " ∈ " => mem
instance : Mem α (List α) := ⟨mem⟩

@[simp] lemma mem_nil (a : α) : a ∈ [] ↔ False := Iff.rfl

@[simp] lemma mem_cons {a b : α} {l : List α} :
a ∈ (b :: l) ↔ a = b ∨ a ∈ l := Iff.rfl

theorem mem_append {a} : ∀ {l₁ l₂ : List α}, a ∈ l₁ ++ l₂ ↔ a ∈ l₁ ∨ a ∈ l₂
| [], _ => by simp [mem]
| b :: l₁, l₂ => by simp only [List.cons_append, mem, or_assoc, mem_append]; exact Iff.rfl
| [], _ => by simp
| b :: l₁, l₂ => by simp [or_assoc, mem_append];

theorem mem_map {f : α → β} {b} : ∀ {l}, b ∈ l.map f ↔ ∃ a, a ∈ l ∧ b = f a
| [] => by simp [mem]; intro ⟨_, e⟩; exact e
@[simp] theorem map_nil {f : α → β} : map f [] = [] := rfl
@[simp] theorem map_cons {f : α → β} : map f (b :: l) = f b :: l.map f := rfl

theorem mem_map {f : α → β} {b} : ∀ {l : List α}, b ∈ l.map f ↔ ∃ a, a ∈ l ∧ b = f a
| [] => by simp; intro ⟨_, e⟩; exact e
| b :: l => by
simp only [join, mem, mem_map]
rw [map_cons, mem_cons, mem_map];
exact ⟨fun | Or.inl h => ⟨_, Or.inl rfl, h⟩
| Or.inr ⟨l, h₁, h₂⟩ => ⟨l, Or.inr h₁, h₂⟩,
fun | ⟨_, Or.inl rfl, h⟩ => Or.inl h
| ⟨l, Or.inr h₁, h₂⟩ => Or.inr ⟨l, h₁, h₂⟩⟩

@[simp] theorem join_nil : join ([] : List (List α)) = [] := rfl

@[simp] theorem join_cons : join (a :: l : List (List α)) = a ++ join l := rfl

theorem mem_join {a} : ∀ {L : List (List α)}, a ∈ L.join ↔ ∃ l, l ∈ L ∧ a ∈ l
| [] => by simp [mem]; intro ⟨_, e⟩; exact e
| [] => by simp; intro ⟨_, e⟩; exact e
| b :: l => by
simp only [join, mem, mem_append, mem_join]
simp only [join, mem_append, mem_join]
exact ⟨fun | Or.inl h => ⟨_, Or.inl rfl, h⟩
| Or.inr ⟨l, h₁, h₂⟩ => ⟨l, Or.inr h₁, h₂⟩,
fun | ⟨_, Or.inl rfl, h⟩ => Or.inl h
| ⟨l, Or.inr h₁, h₂⟩ => Or.inr ⟨l, h₁, h₂⟩⟩

theorem mem_bind {f : α → List β} {b} {l} : b ∈ l.bind f ↔ ∃ a, a ∈ l ∧ b ∈ f a := by
theorem mem_bind {f : α → List β} {b} {l : List α} : b ∈ l.bind f ↔ ∃ a, a ∈ l ∧ b ∈ f a := by
simp [List.bind, mem_map, mem_join]
exact ⟨fun ⟨_, ⟨a, h₁, rfl⟩, h₂⟩ => ⟨a, h₁, h₂⟩, fun ⟨a, h₁, h₂⟩ => ⟨_, ⟨a, h₁, rfl⟩, h₂⟩⟩

Expand Down

0 comments on commit ac54aaa

Please sign in to comment.