Avro format for kotlinx.serialization. This library is a port of sksamuel's Scala Avro generator avro4s.
Avro4k is a Kotlin library that brings support for Avro to the Kotlin Serialization framework. This library supports reading and writing to/from binary and json streams as well as supporting Avro schema generation.
- Generate schemas from Kotlin data classes. This allows you to use data classes as the canonical source for the schemas and generate Avro schemas from them, rather than define schemas externally and then generate (or manually write) data classes to match.
- Marshall data classes to / from instances of Avro Generic Records. The basic structure type in Avro is the IndexedRecord or it's more common subclass, the GenericRecord. This library will marshall data to and from Avro records. This can be useful for interop with frameworks like Kafka which provide serializers which work at the record level.
- Read / Write data classes to input or output streams. Avro records can be serialized as binary (with or without embedded schema) or json, and this library provides AvroInputStream and AvroOutputStream classes to support data classes directly.
- Support logical types. This library provides support for the Avro logical types out of the box, in addition to the standard types supported by the Kotlin serialization framework.
- Add custom serializer for other types. With Avro4k you can easily add your own AvroSerializer instances that provides schemas and serialization for types not supported by default.
Writing schemas manually through the Java based SchemaBuilder
classes can be tedious for complex domain models.
Avro4k allows us to generate schemas directly from data classes at compile time using the Kotlin Serialization library.
This gives you both the convenience of generated code, without the annoyance of having to run a code generation step, as well as avoiding the performance penalty of runtime reflection based code.
Let's define some classes.
@Serializable
data class Ingredient(val name: String, val sugar: Double, val fat: Double)
@Serializable
data class Pizza(val name: String, val ingredients: List<Ingredient>, val vegetarian: Boolean, val kcals: Int)
To generate an Avro Schema, we need to use the Avro
object, invoking schema
and passing in the serializer generated by the Kotlin Serialization compiler plugin for your target class. This will return an org.apache.avro.Schema
instance.
In other words:
val schema = Avro.default.schema(Pizza.serializer())
println(schema.toString(true))
Where the generated schema is as follows:
{
"type":"record",
"name":"Pizza",
"namespace":"com.github.avrokotlin.avro4k.example",
"fields":[
{
"name":"name",
"type":"string"
},
{
"name":"ingredients",
"type":{
"type":"array",
"items":{
"type":"record",
"name":"Ingredient",
"fields":[
{
"name":"name",
"type":"string"
},
{
"name":"sugar",
"type":"double"
},
{
"name":"fat",
"type":"double"
}
]
}
}
},
{
"name":"vegetarian",
"type":"boolean"
},
{
"name":"kcals",
"type":"int"
}
]
}
You can see that the schema generator handles nested data classes, lists, primitives, etc. For a full list of supported object types, see the table later.
Avro schemas for complex types (RECORDs) contain a name and a namespace.
By default, these are the name of the class and the enclosing package name, but it is possible to customize these using the annotations @AvroName
and @AvroNamespace
.
For example, the following class:
package com.github.avrokotlin.avro4k.example
data class Foo(a: String)
Would normally have a schema like this:
{
"type":"record",
"name":"Foo",
"namespace":"com.github.avrokotlin.avro4k.example",
"fields":[
{
"name":"a",
"type":"string"
}
]
}
However we can override the name and/or the namespace like this:
package com.github.avrokotlin.avro4k.example
@AvroName("Wibble")
@AvroNamespace("com.other")
data class Foo(val a: String)
And then the generated schema looks like this:
{
"type":"record",
"name":"Wibble",
"namespace":"com.other",
"fields":[
{
"name":"a",
"type":"string"
}
]
}
Note: It is possible, but not necessary, to use both AvroName and AvroNamespace. You can just use either of them if you wish.
The @AvroName
annotation can also be used to override field names.
This is useful when the record instances you are generating or reading need to have field names different from the Kotlin data classes.
For example if you are reading data generated by another system or another language.
Given the following class.
package com.github.avrokotlin.avro4k.example
data class Foo(val a: String, @AvroName("z") val b : String)
Then the generated schema would look like this:
{
"type":"record",
"name":"Foo",
"namespace":"com.github.avrokotlin.avro4k.example",
"fields":[
{
"name":"a",
"type":"string"
},
{
"name":"z",
"type":"string"
}
]
}
Notice that the second field is z and not b.
Note: @AvroName
does not add an alternative name for the field, but an override.
If you wish to have alternatives then you should use @AvroAlias
.
Avro allows a doc field, and arbitrary key/values to be added to generated schemas.
Avro4k supports this through the use of @AvroDoc
and @AvroProp
annotations.
These properties works on either complex or simple types - in other words, on both fields and classes.
For example, the following code:
package com.github.avrokotlin.avro4k.example
@Serializable
@AvroDoc("hello, is it me you're looking for?")
data class Foo(@AvroDoc("I am a string") val str: String,
@AvroDoc("I am a long") val long: Long,
val int: Int)
Would result in the following schema:
{
"type": "record",
"name": "Foo",
"namespace": "com.github.avrokotlin.avro4k.example",
"doc":"hello, is it me you're looking for?",
"fields": [
{
"name": "str",
"type": "string",
"doc" : "I am a string"
},
{
"name": "long",
"type": "long",
"doc" : "I am a long"
},
{
"name": "int",
"type": "int"
}
]
}
Similarly, for properties:
package com.github.avrokotlin.avro4k.example
@Serializable
@AvroProp("jack", "bruce")
data class Annotated(@AvroProp("richard", "ashcroft") val str: String,
@AvroProp("kate", "bush") val long: Long,
val int: Int)
Would generate this schema:
{
"type": "record",
"name": "Annotated",
"namespace": "com.github.avrokotlin.avro4k.example",
"fields": [
{
"name": "str",
"type": "string",
"richard": "ashcroft"
},
{
"name": "long",
"type": "long",
"kate": "bush"
},
{
"name": "int",
"type": "int"
}
],
"jack": "bruce"
}
In order to customize the scale and precision used by BigDecimal schema generators,
you can add the @ScalePrecision
annotation to instances of BigDecimal.
For example, this code:
@Serializable
data class Test(@ScalePrecision(1, 4) val decimal: BigDecimal)
val schema = Avro.default.schema(Test.serializer())
Would generate the following schema:
{
"type":"record",
"name":"Test",
"namespace":"com.foo",
"fields":[{
"name":"decimal",
"type":{
"type":"bytes",
"logicalType":"decimal",
"scale":"1",
"precision":"4"
}
}]
}
Avro supports the idea of fixed length byte arrays.
To use these we can either override the schema generated for a type to return Schema.Type.Fixed.
This will work for types like String or UUID.
You can also annotate a field with @AvroFixed(size)
.
For example:
package com.github.avrokotlin.avro4k.example
data class Foo(@AvroFixed(7) val mystring: String)
val schema = Avro.default.schema(Foo.serializer())
Will generate the following schema:
{
"type": "record",
"name": "Foo",
"namespace": "com.github.avrokotlin.avro4k.example",
"fields": [
{
"name": "mystring",
"type": {
"type": "fixed",
"name": "mystring",
"size": 7
}
}
]
}
If you have a type that you always want to be represented as fixed, then rather than annotate every single location it is used, you can annotate the type itself.
package com.github.avrokotlin.avro4k.example
@AvroFixed(4)
@Serializable
data class FixedA(val bytes: ByteArray)
@Serializable
data class Foo(val a: FixedA)
val schema = Avro.default.schema(Foo.serializer())
And this would generate:
{
"type": "record",
"name": "Foo",
"namespace": "com.github.avrokotlin.avro4k.example",
"fields": [
{
"name": "a",
"type": {
"type": "fixed",
"name": "FixedA",
"size": 4
}
}
]
}
The kotlinx.serialization framework does not support the standard @transient anotation to mark a field as ignored, but instead supports its own @kotlinx.serialization.Transient
annotation to do the same job.
Any field marked with this will be excluded from the generated schema.
For example, the following code:
package com.github.avrokotlin.avro4k.example
data class Foo(val a: String, @AvroTransient val b: String)
Would result in the following schema:
{
"type": "record",
"name": "Foo",
"namespace": "com.github.avrokotlin.avro4k.example",
"fields": [
{
"name": "a",
"type": "string"
}
]
}
To make your nullable fields optional (put default: null
on all nullable fields if no other explicit default provided) and be able to remove nullable fields regarding compatibility checks,
you can set in the configuration the defaultNullForNullableFields
to true
. Example:
Avro(AvroConfiguration(defaultNullForNullableFields = true))
With avro, you can have nullable fields and optional fields, that are taken into account for compatibility checking when using the schema registry.
But if you want to remove a nullable field that is not optional, depending on the compatibility mode, it may not be compatible because of the missing default value.
- What is an optional field ?
An optional field is a field that have a default value, like an int with a default as
-1
.
- What is a nullable field ?
A nullable field is a field that contains a
null
type in its type union, but it's not an optional field if you don't putdefault
value tonull
.
So to mark a field as optional and facilitate avro contract evolution regarding compatibility checks, then set default
to null
.
Avro4k supports the Avro logical types out of the box as well as other common JDK types.
Avro has no understanding of Kotlin types, or anything outside of it's built in set of supported types, so all values must be converted to something that is compatible with Avro.
For example a java.sql.Timestamp
is usually encoded as a Long
, and a java.util.UUID
is encoded as a String
.
Some values can be mapped in multiple ways depending on how the schema was generated. For example a String
, which is usually encoded as an org.apache.avro.util.Utf8
could also be encoded as an array of bytes if the generated schema for that field was Schema.Type.BYTES
.
Therefore some serializers will take into account the schema passed to them when choosing the avro compatible type.
The following table shows how types used in your code will be mapped / encoded in the generated Avro schemas and files. If a type can be mapped in multiple ways, it is listed more than once.
JVM Type | Schema Type | Logical Type | Encoded Type |
---|---|---|---|
String | STRING | Utf8 | |
String | FIXED | GenericFixed | |
String | BYTES | ByteBuffer | |
Boolean | BOOLEAN | java.lang.Boolean | |
Long | LONG | java.lang.Long | |
Int | INT | java.lang.Integer | |
Short | INT | java.lang.Integer | |
Byte | INT | java.lang.Integer | |
Double | DOUBLE | java.lang.Double | |
Float | FLOAT | java.lang.Float | |
UUID | STRING | UUID | Utf8 |
LocalDate | INT | Date | java.lang.Int |
LocalTime | INT | Time-Millis | java.lang.Int |
LocalDateTime | LONG | Timestamp-Millis | java.lang.Long |
Instant | LONG | Timestamp-Millis | java.lang.Long |
Timestamp | LONG | Timestamp-Millis | java.lang.Long |
BigDecimal | BYTES | Decimal<8,2> | ByteBuffer |
BigDecimal | FIXED | Decimal<8,2> | GenericFixed |
BigDecimal | STRING | Decimal<8,2> | String |
T? (nullable type) | UNION<null,T> | null, T | |
ByteArray | BYTES | ByteBuffer | |
ByteAray | FIXED | GenericFixed | |
ByteBuffer | BYTES | ByteBuffer | |
List[Byte] | BYTES | ByteBuffer | |
Array | ARRAY | Array[T] | |
List | ARRAY | Array[T] | |
Set | ARRAY | Array[T] | |
Map[String, V] | MAP | java.util.Map[String, V] | |
data class T | RECORD | GenericRecord | |
enum class | ENUM | GenericEnumSymbol |
In order to use logical types, annotate the value with an appropriate Serializer:
import com.github.avrokotlin.avro4k.Avro
import com.github.avrokotlin.avro4k.serializer.InstantSerializer
import kotlinx.serialization.Serializable
import java.time.Instant
@Serializable
data class WithInstant(
@Serializable(with=InstantSerializer::class) val inst: Instant
)
All the logical type serializers are available in the package com.github.avrokotlin.avro4k.serializer
. You can find additional serializers for arrow types in the
avro4k-arrow project.
Avro supports four different encoding types serializing records.
These are binary with schema, binary without schema, json and single object encoding.
In avro4k these are represented by an AvroFormat
enum with three values - AvroFormat.Binary
(binary no schema), AvroFormat.Data
(binary with schema), and AvroFormat.Json
.
The single object encoding is currently not supported.
Binary encoding without the schema does not include field names, self-contained information about the types of individual bytes, nor field or record separators. Therefore readers are wholly reliant on the schema used when the data was encoded but the format is by far the most compact. Binary encodings are fast.
Binary encoding with the schema is still quick to deserialize, but is obviously less compact. However, as the schema is included readers do not need to have access to the original schema.
Json encoding is the largest and slowest, but the easist to work with outside of Avro, and of course is easy to view on the wire (if that is a concern).
Avro4k allows us to easily serialize data classes using an instance of AvroOutputStream
which we write to, and close, just like you would any regular output stream. It is created by calling openOutputStream
on an Avro
instance.
When creating an output stream we specify the target, such as a File, Path, or another output stream.
If nothing more is specified, the default encode format AvroEncodeFormat.Data
is used and the schema will be deducted
from the passed SerializationStrategy
.
For example, to serialize instances of the Pizza
class:
@Serializable
data class Ingredient(val name: String, val sugar: Double, val fat: Double)
@Serializable
data class Pizza(val name: String, val ingredients: List<Ingredient>, val vegetarian: Boolean, val kcals: Int)
val veg = Pizza("veg", listOf(Ingredient("peppers", 0.1, 0.3), Ingredient("onion", 1.0, 0.4)), true, 265)
val hawaiian = Pizza("hawaiian", listOf(Ingredient("ham", 1.5, 5.6), Ingredient("pineapple", 5.2, 0.2)), false, 391)
val pizzaSchema = Avro.default.schema(Pizza.serializer())
val os = Avro.default.openOutputStream(Pizza.serializer()) {
encodeFormat = AvroEncodeFormat.Binary
schema = pizzaSchema
}.to(File("pizzas.avro"))
os.write(listOf(veg, hawaiian))
os.flush()
We can easily deserialize a file back into data classes using instances of AvroInputStream
which work in a similar way to the output stream version.
Given the pizzas.avro
file we generated in the previous section on serialization, we will read the records back in as instances of the Pizza
class.
First create an instance of the input stream by calling openInputStream
on an Avro
object specifying the types we will read back.
Optionally, we can also specify a decoding format.
Depending on the chosen format, the source and the writer schema also needs to be configured.
AvroInputStream
has functions to get the next single value, or to return all values as an iterator.
For example, the following code:
@Serializable
data class Ingredient(val name: String, val sugar: Double, val fat: Double)
@Serializable
data class Pizza(val name: String, val ingredients: List<Ingredient>, val vegetarian: Boolean, val kcals: Int)
val veg = Pizza("veg", listOf(Ingredient("peppers", 0.1, 0.3), Ingredient("onion", 1.0, 0.4)), true, 265)
val hawaiian = Pizza("hawaiian", listOf(Ingredient("ham", 1.5, 5.6), Ingredient("pineapple", 5.2, 0.2)), false, 391)
val pizzaSchema = Avro.default.schema(Pizza.serializer())
val output = Avro.default.openOutputStream(Pizza.serializer()) {
encodeFormat = AvroEncodeFormat.Binary
schema = pizzaSchema
}.to(File("pizzas.avro"))
output.write(listOf(veg, hawaiian))
output.close()
val input = Avro.default.openInputStream(Pizza.serializer()) {
decodeFormat = AvroDecodeFormat.Binary(/* writerSchema */ pizzaSchema, /* readerSchema */pizzaSchema)
}.from(File("pizzas.avro"))
input.iterator().forEach { println(it) }
input.close()
Will print out the following:
Pizza(name=veg, ingredients=[Ingredient(name=peppers, sugar=0.1, fat=0.3), Ingredient(name=onion, sugar=1.0, fat=0.4)], vegetarian=true, kcals=265)
Pizza(name=hawaiian, ingredients=[Ingredient(name=ham, sugar=1.5, fat=5.6), Ingredient(name=pineapple, sugar=5.2, fat=0.2)], vegetarian=false, kcals=391)
Gradle
compile 'com.github.avro-kotlin.avro4k:avro4k-core:xxx'
Maven
<dependency>
<groupId>com.github.avro-kotlin.avro4k</groupId>
<artifactId>avro4k-core</artifactId>
<version>xxx</version>
</dependency>
Check the latest released version on Maven Central
Kotlin 1.7.20 up to 1.8.10 cannot properly compile @SerialInfo-Annotations on enums (see Kotlin/kotlinx.serialization#2121). This is fixed with kotlin 1.8.20. So if you are planning to use any of avro4k's annotations on enum types, please make sure that you are using kotlin >= 1.8.20.
Contributions to avro4k are always welcome. Good ways to contribute include:
- Raising bugs and feature requests
- Fixing bugs and enhancing the DSL
- Improving the performance of avro4k = Adding to the documentation