Skip to content

Commit

Permalink
Merge #194
Browse files Browse the repository at this point in the history
194: [WIP] Random Feature-based CES r=odunbar a=odunbar

<!--- THESE LINES ARE COMMENTED -->
## Purpose 
<!--- One sentence to describe the purpose of this PR, refer to any linked issues:
#14 -- this will link to issue 14
Closes #2 -- this will automatically close issue 2 on PR merge
-->
Adds the ability to use (Scalar and vector-valued) RF with uncertainty in place of GP within CES. using `RandomFeatures.jl`

Closes #164 

## Content
<!---  specific tasks that are currently complete 
- Solution implemented
-->

- Interfaces with the currently registered RandomFeatures.jl 
- adds `ScalarRandomFeatureInterface` as a `MachineLearningTool`
- adds `VectorRandomFeatureInterface` as a `MachineLearningTool`
- new example `examples/Emulator/RandomFeature/optimize_and_plot_RF.jl`
- new example `examples/Emulator/RandomFeature/vector_optimize_and_plot_RF.jl`
- new example `examples/Lorenz/calibrate.jl`
- new example `examples/Lorenz/emulate_sample.jl`

The current implementation has Scalar RF replacing (exactly) the GP, whereas Vector RF does no SVD, and therefore learns the output space correlations. The hyperparameter learning is more involved, so to reduce some cost I learn the cholesky factors of an input and output covariance of the feature distribution, currently described by a MatrixVariate Normal distribution.

- new example `examples/GCM/emulate_sample_script.jl` though *currently just the emulation!*

In this example we have 4 options: (Note in all cases we train on cholesky factors for the input variables)
1. `GPR` trains an `output_dim`-length vector of scalar GPRs,
2. `Scalar RFR SVD` replaces the vector of scalar GPRs, with a vector of scalar RFRs,
3. `Vector RFR SVD Diagonal` assumes a diagonalized output in the vector problem (i.e. still in the setting of a system of Scalar RFs & GPs but only train one object)
4. `Vector RFR SVD nondiagonal` still applies the SVD, but does not assume that the resulting output must be diagonal. It therefore learns cholesky factors of the output
4. `Vector RFR nondiagonal` does not apply SVD, nor assumes the output is diagonal. It learns the cholesky factors of the direct output.

### Emulating an R^2 to R^2 function (150 data points)
1) SVD + Scalar GP (diag in) results 
<img src="https://user-images.githubusercontent.com/47412152/192404099-be8d1241-2dd4-4263-ba2a-31de94763abb.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/192404100-62d72ccc-2b36-4ba9-ad36-38bcdf4b9f0f.png" width="300">
2) SVD + Scalar RF (nondiag in) results
<img src="https://user-images.githubusercontent.com/47412152/230235711-6bb0557e-8914-4a43-8f91-f5a144659edc.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230235715-54fb7d5e-fa24-4528-a3fc-27ff7e9aceb8.png" width="300">

3) SVD + vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230229962-c7eefa25-3a57-467c-8ca1-c9ef7b3dbb3e.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230229964-fcfcbe7c-73cd-4837-8db7-5eaa339eaec6.png" width="300">
4) SVD + vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230124-bb50e4db-8ba7-4570-930e-b6504936a1b5.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230128-2422e85a-1100-4422-a52c-8fd32183b7f0.png" width="300">
5) vector RF (diag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230033-618dcfa8-99a7-4462-b31f-e9adf302dc14.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230040-7dad6ce8-b5dc-4057-9693-a71e0a72379c.png" width="300">
6) vector RF (nondiag out) results
<img src="https://user-images.githubusercontent.com/47412152/230230167-25377c56-c622-493d-bd0e-b98fc672189a.png" width="300"> <img src="https://user-images.githubusercontent.com/47412152/230230169-23c659eb-4218-4b27-9625-94a7fd44a941.png" width="300">


### Emulating GCM data R^2 -> R^96, evaluated at a test point


#### SVD + Scalar RF results
<img src="https://user-images.githubusercontent.com/47412152/219200986-9a5f74e4-5e2a-48cf-8e26-5d66de2e751c.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200996-f5b88c6e-8b51-4df0-acac-187a6a786a78.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201000-afac8c7a-aa9a-4400-93e8-75f560954bba.png" width="150">

#### SVD + Vector RF (restrict to diagonal) results [hparam learnt with 202 features])
<img src="https://user-images.githubusercontent.com/47412152/219200373-7b0e2713-c3db-4891-9012-6852381266b5.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219252222-f75ba2c8-b11a-42eb-aa1c-f2308a775041.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219200387-d328a6b6-5f64-4eda-bc7e-3a122054c2a5.png" width="150">

#### SVD + vector RF results (full non-diagonal [hparam learnt with 608 features])
<img src="https://user-images.githubusercontent.com/47412152/220444681-20b3ef41-5347-4406-afd6-ffa8cfc1e1b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444689-92f24b34-6937-4e19-b733-2d1b263ca9f7.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/220444685-70f88334-3c32-438e-8534-e4ca0a1c24d2.png" width="150"> 


#### No-SVD, with vector RF results (full non-diagonal) + standardize each data-type by median
<img src="https://user-images.githubusercontent.com/47412152/235567696-4c5665b1-33db-4c83-a554-f003e5e015b6.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567703-0fae36f9-e49b-4cfc-b1b4-16a313af51b8.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/235567706-1d9513f7-ec37-4fad-b824-a3c62b7759d0.png" width="150"> 

#### SVD + GP results
<img src="https://user-images.githubusercontent.com/47412152/219201341-13acb758-a444-4e05-98c9-ed6975dbd094.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201347-d5c13d9f-3d63-456b-8059-fea0f31346a0.png" width="150"> <img src="https://user-images.githubusercontent.com/47412152/219201351-fa2a4a61-bf75-4292-8549-8f304f05cebe.png" width="150">


### Full CES test (with "E" emulating an R^2 -> R^12 forward map) 250 data points
1) SVD + Scalar GP (diag in) results 
2) SVD + Scalar RF (diag in) results
3) SVD + Scalar RF (nondiag in) results
4) SVD + vector RF (nondiag in, diag out) results
5) SVD + vector RF (nondiag in, nondiag out) results
6) vector RF (nondiag in, diag out) results
7) vector RF (nondiag in, nondiag out) results

<img src="https://user-images.githubusercontent.com/47412152/236000320-bbf88ee3-6de7-4e8e-8797-13f48696337a.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364924-c41dd024-e56e-4506-ad19-2fc324d0db61.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364926-f74d9467-7083-4fb9-8c89-b6ea4ab8aad3.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364930-a0424381-ccc5-472c-b85f-e24aec7319f0.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364932-3cb2e6c6-0f5b-4544-9916-cddfcbd3c882.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364927-b05e1bc8-0430-4db8-97dc-29b0fce0f305.png" width="175"> <img src="https://user-images.githubusercontent.com/47412152/236364929-5e78ceb3-07e9-4230-95b1-2e638dab1ce3.png" width="175"> 


<!---
Review checklist

I have:
- followed the codebase contribution guide: https://clima.github.io/ClimateMachine.jl/latest/Contributing/
- followed the style guide: https://clima.github.io/ClimateMachine.jl/latest/DevDocs/CodeStyle/
- followed the documentation policy: https://github.com/CliMA/policies/wiki/Documentation-Policy
- checked that this PR does not duplicate an open PR.

In the Content, I have included 
- relevant unit tests, and integration tests, 
- appropriate docstrings on all functions, structs, and modules, and included relevent documentation.

-->


Co-authored-by: odunbar <odunbar@caltech.edu>
  • Loading branch information
bors[bot] and odunbar authored May 5, 2023
2 parents 045ee4a + 5a33edf commit 74a23b6
Show file tree
Hide file tree
Showing 31 changed files with 3,282 additions and 246 deletions.
6 changes: 5 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,12 @@ LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MCMCChains = "c7f686f2-ff18-58e9-bc7b-31028e88f75d"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
RandomFeatures = "36c3bae2-c0c3-419d-b3b4-eebadd35c5e5"
ScikitLearn = "3646fa90-6ef7-5e7e-9f22-8aca16db6324"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"

Expand All @@ -32,8 +35,9 @@ GaussianProcesses = "0.12"
MCMCChains = "4.14, 5, 6"
PyCall = "1.93"
ScikitLearn = "0.6, 0.7"
RandomFeatures = "0.3"
StatsBase = "0.33"
julia = "1.6"
julia = "1.6, 1.7, 1.8"

[extras]
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
Expand Down
1 change: 0 additions & 1 deletion docs/Project.toml
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
[deps]
CalibrateEmulateSample = "95e48a1f-0bec-4818-9538-3db4340308e3"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"

6 changes: 5 additions & 1 deletion docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,11 @@ design = ["AbstractMCMC sampling API" => "API/AbstractMCMC.md"]

api = [
"CalibrateEmulateSample" => [
"Emulators" => ["General Emulator" => "API/Emulators.md", "Gaussian Process" => "API/GaussianProcess.md"],
"Emulators" => [
"General Interface" => "API/Emulators.md",
"Gaussian Process" => "API/GaussianProcess.md",
# "Random Features" => "API/RandomFeatures.md",
],
"MarkovChainMonteCarlo" => "API/MarkovChainMonteCarlo.md",
"Utilities" => "API/Utilities.md",
],
Expand Down
3 changes: 2 additions & 1 deletion docs/src/API/GaussianProcess.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ CurrentModule = CalibrateEmulateSample.Emulators
GaussianProcessesPackage
PredictionType
GaussianProcess
build_models!
build_models!(::GaussianProcess{GPJL}, ::PairedDataContainer{FT}) where {FT <: AbstractFloat}
optimize_hyperparameters!(::GaussianProcess{GPJL})
predict(::GaussianProcess{GPJL}, ::AbstractMatrix{FT}) where {FT <: AbstractFloat}
```
39 changes: 39 additions & 0 deletions docs/src/API/RandomFeatures.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# RandomFeatures

```@meta
CurrentModule = CalibrateEmulateSample.Emulators
```

## Scalar interface

```@docs
ScalarRandomFeatureInterface
ScalarRandomFeatureInterface(::Int,::Int)
build_models!(::ScalarRandomFeatureInterface, ::PairedDataContainer{FT}) where {FT <: AbstractFloat}
predict(::ScalarRandomFeatureInterface, ::M) where {M <: AbstractMatrix}
```

## Vector Interface

```@docs
VectorRandomFeatureInterface
VectorRandomFeatureInterface(::Int, ::Int, ::Int)
build_models!(::VectorRandomFeatureInterface, ::PairedDataContainer{FT}) where {FT <: AbstractFloat}
predict(::VectorRandomFeatureInterface, ::M) where {M <: AbstractMatrix}
```

## Other utilities
```@docs
get_rfms
get_fitted_features
get_batch_sizes
get_n_features
get_input_dim
get_output_dim
get_rng
get_diagonalize_input
get_feature_decomposition
get_optimizer_options
optimize_hyperparameters!(::ScalarRandomFeatureInterface)
optimize_hyperparameters!(::VectorRandomFeatureInterface)
```
12 changes: 6 additions & 6 deletions examples/Emulator/GaussianProcess/plot_GP.jl
Original file line number Diff line number Diff line change
Expand Up @@ -68,9 +68,9 @@ if !isdir(output_directory)
end

#create the machine learning tools: Gaussian Process
gppackage = GPJL()
gppackage = SKLJL()
pred_type = YType()
gaussian_process = GaussianProcess(gppackage, noise_learn = true)
gaussian_process = GaussianProcess(gppackage, noise_learn = false)

# Generate training data (x-y pairs, where x ∈ ℝ ᵖ, y ∈ ℝ ᵈ)
# x = [x1, x2]: inputs/predictors/features/parameters
Expand All @@ -92,7 +92,7 @@ gx[2, :] = g2x

# Add noise η
μ = zeros(d)
Σ = 0.1 * [[0.8, 0.0] [0.0, 0.5]] # d x d
Σ = 0.1 * [[0.8, 0.1] [0.1, 0.5]] # d x d
noise_samples = rand(MvNormal(μ, Σ), n)
# y = G(x) + η
Y = gx .+ noise_samples
Expand Down Expand Up @@ -182,9 +182,9 @@ println("GP trained")

# Plot mean and variance of the predicted observables y1 and y2
# For this, we generate test points on a x1-x2 grid.
n_pts = 50
x1 = range(0.0, stop = 2 * π, length = n_pts)
x2 = range(0.0, stop = 2 * π, length = n_pts)
n_pts = 200
x1 = range(0.0, stop = (4.0 / 5.0) * 2 * π, length = n_pts)
x2 = range(0.0, stop = (4.0 / 5.0) * 2 * π, length = n_pts)
X1, X2 = meshgrid(x1, x2)
# Input for predict has to be of size N_samples x input_dim
inputs = permutedims(hcat(X1[:], X2[:]), (2, 1))
Expand Down
15 changes: 15 additions & 0 deletions examples/Emulator/RandomFeature/Project.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
[deps]
CalibrateEmulateSample = "95e48a1f-0bec-4818-9538-3db4340308e3"
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
FiniteDiff = "6a86dc24-6348-571c-b903-95158fe2bd41"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PyPlot = "d330b81b-6aea-500a-939a-2ce795aea3ee"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"

[compat]
FiniteDiff = "~2.10"
julia = "~1.6"
Loading

0 comments on commit 74a23b6

Please sign in to comment.