Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Manage activation function as a class #62

Merged
merged 5 commits into from
Feb 11, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 28 additions & 25 deletions lib/nn.js
Original file line number Diff line number Diff line change
@@ -1,13 +1,21 @@
// Other techniques for learning

function sigmoid(x) {
return 1 / (1 + Math.exp(-x));
class ActivationFunction{
constructor(func, dfunc){
this.func = func;
this.dfunc = dfunc;
}
}

function dsigmoid(y) {
// return sigmoid(x) * (1 - sigmoid(x));
return y * (1 - y);
}
let sigmoid = new ActivationFunction(
x => 1 / (1 + Math.exp(-x)),
y => y * (1- y)
);

let tanh = new ActivationFunction(
x => Math.tanh(x),
y => 1-(y*y)
);


class NeuralNetwork {
Expand All @@ -26,10 +34,9 @@ class NeuralNetwork {
this.bias_h.randomize();
this.bias_o.randomize();
this.setLearningRate();

this.setActivationFunction();
this.setDActivationFunction();


}

predict(input_array) {
Expand All @@ -39,41 +46,37 @@ class NeuralNetwork {
let hidden = Matrix.multiply(this.weights_ih, inputs);
hidden.add(this.bias_h);
// activation function!
hidden.map(this.activation_function);
hidden.map(this.activation_function.func);

// Generating the output's output!
let output = Matrix.multiply(this.weights_ho, hidden);
output.add(this.bias_o);
output.map(this.activation_function);
output.map(this.activation_function.func);

// Sending back to the caller!
return output.toArray();
}

setLearningRate(learning_rate = 0.1) {
this.learning_rate = learning_rate;
this.learning_rate = learning_rate;
}

setActivationFunction(Fun = sigmoid) {
this.activation_function = Fun;
}

setDActivationFunction(dFun = dsigmoid) {
this.d_activation_function = dFun;

setActivationFunction(func = sigmoid) {
this.activation_function = func;
}

train(input_array, target_array) {
train(input_array, target_array) {
// Generating the Hidden Outputs
let inputs = Matrix.fromArray(input_array);
let hidden = Matrix.multiply(this.weights_ih, inputs);
hidden.add(this.bias_h);
// activation function!
hidden.map(this.activation_function);
hidden.map(this.activation_function.func);

// Generating the output's output!
let outputs = Matrix.multiply(this.weights_ho, hidden);
outputs.add(this.bias_o);
outputs.map(this.activation_function);
outputs.map(this.activation_function.func);

// Convert array to matrix object
let targets = Matrix.fromArray(target_array);
Expand All @@ -84,7 +87,7 @@ class NeuralNetwork {

// let gradient = outputs * (1 - outputs);
// Calculate gradient
let gradients = Matrix.map(outputs, this.d_activation_function);
let gradients = Matrix.map(outputs, this.activation_function.dfunc);
gradients.multiply(output_errors);
gradients.multiply(this.learning_rate);

Expand All @@ -103,7 +106,7 @@ class NeuralNetwork {
let hidden_errors = Matrix.multiply(who_t, output_errors);

// Calculate hidden gradient
let hidden_gradient = Matrix.map(hidden, this.d_activation_function);
let hidden_gradient = Matrix.map(hidden, this.activation_function.dfunc);
hidden_gradient.multiply(hidden_errors);
hidden_gradient.multiply(this.learning_rate);

Expand Down