-
Notifications
You must be signed in to change notification settings - Fork 190
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Feat: Eisenstein integers #543
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
In general looks quite good already, I only added a few comments for general improvement, but nothing significant imo. See which ones make sense, you don't have to incorporate all.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
One thing though - I'm not sure if gnark-crypto/field/eisenstein
is good place for it. Previously the GLV scalar splitting functions are defined in gnark-crypto/ecc
, but I wouldn't want to overload the ecc
package.
Maybe gnark-crypto/utils
instead?
Not a big fan of "utils" package, I prefer option 1 on my side it's more self describing when a caller uses it |
I completely agree, usually |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Now looks a lot better, thanks! I'm approving for now even though there are two more remarks. I'm not really sure the benchmark thing is an issue (but I guess it really depends on the optimization levels etc.) and the other input length check only provides better panic message.
Suggested edit: diff --git a/field/eisenstein/eisenstein.go b/field/eisenstein/eisenstein.go
index 54bfde8af..2bf0dc46b 100644
--- a/field/eisenstein/eisenstein.go
+++ b/field/eisenstein/eisenstein.go
@@ -6,7 +6,16 @@ import (
// A ComplexNumber represents an arbitrary-precision Eisenstein integer.
type ComplexNumber struct {
- A0, A1 big.Int
+ A0, A1 *big.Int
+}
+
+func (z *ComplexNumber) init() {
+ if z.A0 == nil {
+ z.A0 = new(big.Int)
+ }
+ if z.A1 == nil {
+ z.A1 = new(big.Int)
+ }
}
// String implements Stringer interface for fancy printing
@@ -16,55 +25,60 @@ func (z *ComplexNumber) String() string {
// Equal returns true if z equals x, false otherwise
func (z *ComplexNumber) Equal(x *ComplexNumber) bool {
- return z.A0.Cmp(&x.A0) == 0 && z.A1.Cmp(&x.A1) == 0
+ return z.A0.Cmp(x.A0) == 0 && z.A1.Cmp(x.A1) == 0
}
// Set sets z to x, and returns z.
func (z *ComplexNumber) Set(x *ComplexNumber) *ComplexNumber {
- z.A0.Set(&x.A0)
- z.A1.Set(&x.A1)
+ z.init()
+ z.A0.Set(x.A0)
+ z.A1.Set(x.A1)
return z
}
// SetZero sets z to 0, and returns z.
func (z *ComplexNumber) SetZero() *ComplexNumber {
- z.A0 = *big.NewInt(0)
- z.A1 = *big.NewInt(0)
+ z.A0 = big.NewInt(0)
+ z.A1 = big.NewInt(0)
return z
}
// SetOne sets z to 1, and returns z.
func (z *ComplexNumber) SetOne() *ComplexNumber {
- z.A0 = *big.NewInt(1)
- z.A1 = *big.NewInt(0)
+ z.A0 = big.NewInt(1)
+ z.A1 = big.NewInt(0)
return z
}
// Neg sets z to the negative of x, and returns z.
func (z *ComplexNumber) Neg(x *ComplexNumber) *ComplexNumber {
- z.A0.Neg(&x.A0)
- z.A1.Neg(&x.A1)
+ z.init()
+ z.A0.Neg(x.A0)
+ z.A1.Neg(x.A1)
return z
}
// Conjugate sets z to the conjugate of x, and returns z.
func (z *ComplexNumber) Conjugate(x *ComplexNumber) *ComplexNumber {
- z.A0.Sub(&x.A0, &x.A1)
- z.A1.Neg(&x.A1)
+ z.init()
+ z.A0.Sub(x.A0, x.A1)
+ z.A1.Neg(x.A1)
return z
}
// Add sets z to the sum of x and y, and returns z.
func (z *ComplexNumber) Add(x, y *ComplexNumber) *ComplexNumber {
- z.A0.Add(&x.A0, &y.A0)
- z.A1.Add(&x.A1, &y.A1)
+ z.init()
+ z.A0.Add(x.A0, y.A0)
+ z.A1.Add(x.A1, y.A1)
return z
}
// Sub sets z to the difference of x and y, and returns z.
func (z *ComplexNumber) Sub(x, y *ComplexNumber) *ComplexNumber {
- z.A0.Sub(&x.A0, &y.A0)
- z.A1.Sub(&x.A1, &y.A1)
+ z.init()
+ z.A0.Sub(x.A0, y.A0)
+ z.A1.Sub(x.A1, y.A1)
return z
}
@@ -74,13 +88,14 @@ func (z *ComplexNumber) Sub(x, y *ComplexNumber) *ComplexNumber {
//
// (x0+x1ω)(y0+y1ω) = (x0y0-x1y1) + (x0y1+x1y0-x1y1)ω
func (z *ComplexNumber) Mul(x, y *ComplexNumber) *ComplexNumber {
+ z.init()
var t [3]big.Int
var z0, z1 big.Int
- t[0].Mul(&x.A0, &y.A0)
- t[1].Mul(&x.A1, &y.A1)
+ t[0].Mul(x.A0, y.A0)
+ t[1].Mul(x.A1, y.A1)
z0.Sub(&t[0], &t[1])
- t[0].Mul(&x.A0, &y.A1)
- t[2].Mul(&x.A1, &y.A0)
+ t[0].Mul(x.A0, y.A1)
+ t[2].Mul(x.A1, y.A0)
t[0].Add(&t[0], &t[2])
z1.Sub(&t[0], &t[1])
z.A0.Set(&z0)
@@ -97,12 +112,12 @@ func (z *ComplexNumber) Norm() *big.Int {
norm := new(big.Int)
temp := new(big.Int)
norm.Add(
- norm.Mul(&z.A0, &z.A0),
- temp.Mul(&z.A1, &z.A1),
+ norm.Mul(z.A0, z.A0),
+ temp.Mul(z.A1, z.A1),
)
norm.Sub(
norm,
- temp.Mul(&z.A0, &z.A1),
+ temp.Mul(z.A0, z.A1),
)
return norm
}
@@ -115,8 +130,8 @@ func (z *ComplexNumber) Quo(x, y *ComplexNumber) *ComplexNumber {
}
z.Conjugate(y)
z.Mul(x, z)
- z.A0.Div(&z.A0, norm)
- z.A1.Div(&z.A1, norm)
+ z.A0.Div(z.A0, norm)
+ z.A1.Div(z.A1, norm)
return z
}
@@ -128,8 +143,8 @@ func (z *ComplexNumber) QuoRem(x, y, r *ComplexNumber) (*ComplexNumber, *Complex
}
z.Conjugate(y)
z.Mul(x, z)
- z.A0.Div(&z.A0, norm)
- z.A1.Div(&z.A1, norm)
+ z.A0.Div(z.A0, norm)
+ z.A1.Div(z.A1, norm)
var t ComplexNumber
r.Sub(x, t.Mul(y, z))
return z, r
diff --git a/field/eisenstein/eisenstein_test.go b/field/eisenstein/eisenstein_test.go
index 224497201..67624d3fe 100644
--- a/field/eisenstein/eisenstein_test.go
+++ b/field/eisenstein/eisenstein_test.go
@@ -246,7 +246,7 @@ func GenNumber(boundSize int64) gopter.Gen {
var bound big.Int
bound.Exp(big.NewInt(2), big.NewInt(boundSize), nil)
elmt, _ := rand.Int(genParams.Rng, &bound)
- genResult := gopter.NewGenResult(*elmt, gopter.NoShrinker)
+ genResult := gopter.NewGenResult(elmt, gopter.NoShrinker)
return genResult
}
}
@@ -257,7 +257,7 @@ func GenComplexNumber(boundSize int64) gopter.Gen {
GenNumber(boundSize),
GenNumber(boundSize),
).Map(func(values []interface{}) *ComplexNumber {
- return &ComplexNumber{A0: values[0].(big.Int), A1: values[1].(big.Int)}
+ return &ComplexNumber{A0: values[0].(*big.Int), A1: values[1].(*big.Int)}
})
}
@@ -268,8 +268,8 @@ func BenchmarkHalfGCD(b *testing.B) {
a1, _ := rand.Int(rand.Reader, prime)
c0, _ := rand.Int(rand.Reader, prime)
c1, _ := rand.Int(rand.Reader, prime)
- a := ComplexNumber{A0: *a0, A1: *a1}
- c := ComplexNumber{A0: *c0, A1: *c1}
+ a := ComplexNumber{A0: a0, A1: a1}
+ c := ComplexNumber{A0: c0, A1: c1}
b.ResetTimer()
for i := 0; i < b.N; i++ {
_ = HalfGCD(&a, &c)
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks perfect now! Thanks for the fixes.
Description
This PR implements Eisenstein integers arithmetic, including the half-GCD algorithm.
This follows:
Type of change
How has this been tested?
Tests are implemented in
eisenstein_test.go
.How has this been benchmarked?
Half-GCD of some random 128-bit Eisenstein integers on a z1d.large AWS machine:
Checklist:
golangci-lint
does not output errors locally