Skip to content

CopilotKit/strands-file-analyzer-demo

Repository files navigation

File Investigator

AI-powered document analysis demo built with CopilotKit, Strands Agents, and Amazon Bedrock.

About This Project

What This Is:

  • Educational demo showing how to integrate CopilotKit with Python agents
  • Reference for building TypeScript frontends with Python backends
  • Example of real-time state synchronization between frontend and agent

What This Is NOT:

  • Production-ready document processing service
  • Secure analysis tool for sensitive documents
  • Replacement for professional legal/compliance review

Use this to:

  • Learn CopilotKit + Strands integration patterns
  • See how to sync state between React and Python
  • Understand multi-file document processing with AWS Bedrock

Quick Start

Prerequisites

  • Node.js 20+
  • Python 3.12+
  • AWS credentials with Bedrock access

1. Install dependencies

npm install
cd agent && uv sync && cd ..

2. Configure AWS credentials

Create agent/.env:

AWS_ACCESS_KEY_ID=your-access-key
AWS_SECRET_ACCESS_KEY=your-secret-key
AWS_REGION=us-west-1

3. Start development servers

npm run dev

This starts:


Key Features

Multi-File PDF Support:

  • Upload up to 10 PDFs (150MB each)
  • Files ≤4.5MB sent as native PDFs to preserve formatting
  • Files >4.5MB automatically use text extraction
  • Combined analysis across all documents

Real-Time UI Updates:

  • Dashboard panels update as agent processes documents
  • Key findings, redacted content speculation, tweet generation
  • Executive summary with markdown formatting

Conversational Interface:

  • Chat with the agent about uploaded documents
  • Tool calls render as custom UI components in the chat

How CopilotKit Powers This App

useCoAgent - State Synchronization

Keeps frontend and Python agent in sync automatically:

const { state, setState } = useCoAgent({
  name: "file_investigator",
  initialState: INITIAL_STATE
});

When you upload files on the frontend, they're instantly available to the Python agent. When the agent updates findings, the UI updates immediately.

Why this matters: No manual API calls or state management - CopilotKit handles the bidirectional sync via AG-UI Protocol.

CopilotChat - Conversational UI

Provides the chat interface with built-in tool call rendering:

<CopilotChat
  labels={{
    title: "File Investigator",
    initial: "Upload a PDF to begin..."
  }}
/>

Why this matters: You get a production-quality chat UI out of the box, with streaming responses and tool call visualization.

useDefaultTool - Custom Tool UI

Renders custom components when the agent calls tools:

const defaultTools = [
  useDefaultTool({
    toolKey: "update_findings",
    Component: () => <FindingsCard findings={state.findings} />
  })
];

Why this matters: Instead of generic JSON displays, you control exactly how tool outputs appear in the chat.


How Strands Agents Work Here

What is Strands?

Strands is a Python framework for building AI agents. It handles the tool-calling loop, state management, and LLM integration.

What is ag_ui_strands?

ag_ui_strands bridges Strands with CopilotKit. It:

  • Wraps your Strands agent with FastAPI endpoints
  • Emits state updates when tools are called
  • Handles the AG-UI Protocol communication

Basic Agent Setup

from strands import Agent
from ag_ui_strands import StrandsAgent

# Create your Strands agent
strands_agent = Agent(
    system="You are the File Investigator...",
    model="anthropic/claude-haiku-4-5-20251001"
)

# Add tools
strands_agent.add_tool(update_findings)
strands_agent.add_tool(update_summary)

# Wrap with ag_ui_strands
app = StrandsAgent(
    agent=strands_agent,
    name="file_investigator",
    description="AI document analyst"
).mount(FastAPI())

Why this matters: You write standard Strands tools in Python, and ag_ui_strands automatically makes them work with CopilotKit's frontend.

Tools Update the UI

When you attach a state_from_args callback to a tool, the frontend UI updates automatically:

def update_findings(findings: dict, context) -> str:
    """Agent calls this to update findings panel."""
    return "Updated findings"

# This callback syncs state to frontend
update_findings.state_from_args = lambda args, context: {
    **get_current_state(context),
    "findings": args.get("findings", [])
}

Why this matters: One tool call updates both the agent's logic and the user's UI - no separate API calls needed.


Multi-File PDF Strategy

The Challenge

AWS Bedrock has limits:

  • 4.5MB per document
  • 5 documents per message

But users want to upload large files and multiple files together.

The Solution

Intelligent processing based on file size:

  1. Small files (≤4.5MB): Sent as native PDFs → preserves formatting and images
  2. Large files (>4.5MB): Text extracted via pypdf → enables large file support
  3. Beyond 5 files: Additional files use text extraction → respects Bedrock limit

The agent sees all files and analyzes them together, regardless of how they were processed.


Architecture

┌─────────────────────────────────────────────────────────────┐
│                     Next.js Frontend                         │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────┐  │
│  │ File Upload │  │  Dashboard  │  │   CopilotKit Chat   │  │
│  │  (multi)    │  │   Panels    │  │                     │  │
│  └─────────────┘  └─────────────┘  └─────────────────────┘  │
│                           │                                  │
│                    useCoAgent (state sync)                   │
└───────────────────────────┬─────────────────────────────────┘
                            │ AG-UI Protocol (HTTP + SSE)
┌───────────────────────────┴─────────────────────────────────┐
│                     Python Agent                             │
│                                                              │
│              Strands + ag_ui_strands + FastAPI               │
│                           │                                  │
│         Tools: update_findings, update_redacted,             │
│                update_tweets, update_summary                 │
│                           │                                  │
│                    Amazon Bedrock                            │
│               (Claude Haiku)                                 │
└─────────────────────────────────────────────────────────────┘

Data Flow

  1. User uploads PDFs → Frontend state updates via useCoAgent
  2. State syncs to Python agent automatically
  3. User sends chat message → "Analyze these documents"
  4. Agent reads PDFs from state, calls Bedrock
  5. Agent calls tools → update_findings, update_tweets, etc.
  6. Tool callbacks emit state updates
  7. Frontend receives updates → Dashboard panels re-render

Project Structure

├── src/
│   ├── app/
│   │   ├── page.tsx                 # Main page with useCoAgent + CopilotChat
│   │   ├── layout.tsx               # CopilotKit provider
│   │   └── api/copilotkit/route.ts  # Runtime configuration
│   ├── components/
│   │   ├── dashboard-panels.tsx     # Dashboard UI components
│   │   ├── file-upload.tsx          # Multi-file upload
│   │   └── tool-cards.tsx           # Tool UI renderers
│   └── types/
│       └── investigator.ts          # TypeScript interfaces
├── agent/
│   ├── main.py                      # Strands agent + ag_ui_strands
│   ├── pdf_utils.py                 # PDF text extraction
│   └── pyproject.toml               # Python dependencies
└── package.json

Environment Variables

Agent (agent/.env)

Variable Description
AWS_ACCESS_KEY_ID AWS access key for Bedrock
AWS_SECRET_ACCESS_KEY AWS secret key
AWS_REGION AWS region (default: us-west-1)

Frontend (optional)

Variable Description
AGENT_URL Agent URL (default: http://localhost:8000)

Tech Stack

Frontend:

  • Next.js 16
  • React 19
  • CopilotKit 1.10
  • Tailwind CSS 4

Backend:

  • Python 3.12
  • Strands Agents 1.15+
  • ag_ui_strands 0.1.0b12
  • FastAPI + Uvicorn
  • pypdf 4.0+
  • Amazon Bedrock (Claude Haiku)

Commands

Command Description
npm run dev Start both frontend and agent
npm run dev:ui Start frontend only
npm run dev:agent Start agent only
npm run build Build for production
npm run lint Run ESLint

Troubleshooting

Agent not connecting:

  • Verify agent is running on port 8000
  • Check AWS credentials in agent/.env
  • Ensure Bedrock model access is enabled

PDF not processing:

  • Large PDFs (>4.5MB) automatically use text extraction
  • Check agent logs for errors
  • Verify PDF is not corrupted or encrypted

State not syncing:

  • Ensure both servers are running
  • Check browser console for errors
  • Verify agent name matches in both frontend and backend

Learning Resources

CopilotKit:

Strands Agents:

AWS Bedrock:


License

MIT

Built by Mark Morgan

Releases

No releases published

Packages

No packages published