AI-powered document analysis demo built with CopilotKit, Strands Agents, and Amazon Bedrock.
What This Is:
- Educational demo showing how to integrate CopilotKit with Python agents
- Reference for building TypeScript frontends with Python backends
- Example of real-time state synchronization between frontend and agent
What This Is NOT:
- Production-ready document processing service
- Secure analysis tool for sensitive documents
- Replacement for professional legal/compliance review
Use this to:
- Learn CopilotKit + Strands integration patterns
- See how to sync state between React and Python
- Understand multi-file document processing with AWS Bedrock
- Node.js 20+
- Python 3.12+
- AWS credentials with Bedrock access
npm install
cd agent && uv sync && cd ..Create agent/.env:
AWS_ACCESS_KEY_ID=your-access-key
AWS_SECRET_ACCESS_KEY=your-secret-key
AWS_REGION=us-west-1npm run devThis starts:
- Frontend: http://localhost:3000
- Agent: http://localhost:8000
Multi-File PDF Support:
- Upload up to 10 PDFs (150MB each)
- Files ≤4.5MB sent as native PDFs to preserve formatting
- Files >4.5MB automatically use text extraction
- Combined analysis across all documents
Real-Time UI Updates:
- Dashboard panels update as agent processes documents
- Key findings, redacted content speculation, tweet generation
- Executive summary with markdown formatting
Conversational Interface:
- Chat with the agent about uploaded documents
- Tool calls render as custom UI components in the chat
Keeps frontend and Python agent in sync automatically:
const { state, setState } = useCoAgent({
name: "file_investigator",
initialState: INITIAL_STATE
});When you upload files on the frontend, they're instantly available to the Python agent. When the agent updates findings, the UI updates immediately.
Why this matters: No manual API calls or state management - CopilotKit handles the bidirectional sync via AG-UI Protocol.
Provides the chat interface with built-in tool call rendering:
<CopilotChat
labels={{
title: "File Investigator",
initial: "Upload a PDF to begin..."
}}
/>Why this matters: You get a production-quality chat UI out of the box, with streaming responses and tool call visualization.
Renders custom components when the agent calls tools:
const defaultTools = [
useDefaultTool({
toolKey: "update_findings",
Component: () => <FindingsCard findings={state.findings} />
})
];Why this matters: Instead of generic JSON displays, you control exactly how tool outputs appear in the chat.
Strands is a Python framework for building AI agents. It handles the tool-calling loop, state management, and LLM integration.
ag_ui_strands bridges Strands with CopilotKit. It:
- Wraps your Strands agent with FastAPI endpoints
- Emits state updates when tools are called
- Handles the AG-UI Protocol communication
from strands import Agent
from ag_ui_strands import StrandsAgent
# Create your Strands agent
strands_agent = Agent(
system="You are the File Investigator...",
model="anthropic/claude-haiku-4-5-20251001"
)
# Add tools
strands_agent.add_tool(update_findings)
strands_agent.add_tool(update_summary)
# Wrap with ag_ui_strands
app = StrandsAgent(
agent=strands_agent,
name="file_investigator",
description="AI document analyst"
).mount(FastAPI())Why this matters: You write standard Strands tools in Python, and ag_ui_strands automatically makes them work with CopilotKit's frontend.
When you attach a state_from_args callback to a tool, the frontend UI updates automatically:
def update_findings(findings: dict, context) -> str:
"""Agent calls this to update findings panel."""
return "Updated findings"
# This callback syncs state to frontend
update_findings.state_from_args = lambda args, context: {
**get_current_state(context),
"findings": args.get("findings", [])
}Why this matters: One tool call updates both the agent's logic and the user's UI - no separate API calls needed.
AWS Bedrock has limits:
- 4.5MB per document
- 5 documents per message
But users want to upload large files and multiple files together.
Intelligent processing based on file size:
- Small files (≤4.5MB): Sent as native PDFs → preserves formatting and images
- Large files (>4.5MB): Text extracted via pypdf → enables large file support
- Beyond 5 files: Additional files use text extraction → respects Bedrock limit
The agent sees all files and analyzes them together, regardless of how they were processed.
┌─────────────────────────────────────────────────────────────┐
│ Next.js Frontend │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐ │
│ │ File Upload │ │ Dashboard │ │ CopilotKit Chat │ │
│ │ (multi) │ │ Panels │ │ │ │
│ └─────────────┘ └─────────────┘ └─────────────────────┘ │
│ │ │
│ useCoAgent (state sync) │
└───────────────────────────┬─────────────────────────────────┘
│ AG-UI Protocol (HTTP + SSE)
┌───────────────────────────┴─────────────────────────────────┐
│ Python Agent │
│ │
│ Strands + ag_ui_strands + FastAPI │
│ │ │
│ Tools: update_findings, update_redacted, │
│ update_tweets, update_summary │
│ │ │
│ Amazon Bedrock │
│ (Claude Haiku) │
└─────────────────────────────────────────────────────────────┘
- User uploads PDFs → Frontend state updates via
useCoAgent - State syncs to Python agent automatically
- User sends chat message → "Analyze these documents"
- Agent reads PDFs from state, calls Bedrock
- Agent calls tools →
update_findings,update_tweets, etc. - Tool callbacks emit state updates
- Frontend receives updates → Dashboard panels re-render
├── src/
│ ├── app/
│ │ ├── page.tsx # Main page with useCoAgent + CopilotChat
│ │ ├── layout.tsx # CopilotKit provider
│ │ └── api/copilotkit/route.ts # Runtime configuration
│ ├── components/
│ │ ├── dashboard-panels.tsx # Dashboard UI components
│ │ ├── file-upload.tsx # Multi-file upload
│ │ └── tool-cards.tsx # Tool UI renderers
│ └── types/
│ └── investigator.ts # TypeScript interfaces
├── agent/
│ ├── main.py # Strands agent + ag_ui_strands
│ ├── pdf_utils.py # PDF text extraction
│ └── pyproject.toml # Python dependencies
└── package.json
| Variable | Description |
|---|---|
AWS_ACCESS_KEY_ID |
AWS access key for Bedrock |
AWS_SECRET_ACCESS_KEY |
AWS secret key |
AWS_REGION |
AWS region (default: us-west-1) |
| Variable | Description |
|---|---|
AGENT_URL |
Agent URL (default: http://localhost:8000) |
Frontend:
- Next.js 16
- React 19
- CopilotKit 1.10
- Tailwind CSS 4
Backend:
- Python 3.12
- Strands Agents 1.15+
- ag_ui_strands 0.1.0b12
- FastAPI + Uvicorn
- pypdf 4.0+
- Amazon Bedrock (Claude Haiku)
| Command | Description |
|---|---|
npm run dev |
Start both frontend and agent |
npm run dev:ui |
Start frontend only |
npm run dev:agent |
Start agent only |
npm run build |
Build for production |
npm run lint |
Run ESLint |
Agent not connecting:
- Verify agent is running on port 8000
- Check AWS credentials in
agent/.env - Ensure Bedrock model access is enabled
PDF not processing:
- Large PDFs (>4.5MB) automatically use text extraction
- Check agent logs for errors
- Verify PDF is not corrupted or encrypted
State not syncing:
- Ensure both servers are running
- Check browser console for errors
- Verify agent name matches in both frontend and backend
CopilotKit:
Strands Agents:
AWS Bedrock:
MIT
Built by Mark Morgan