Skip to content

SYSTEMATIC REVIEW OF UNET-LIKE CHANGE DETECTION MODELS CORRESPONDING TO DIFFRENT BLOCKS

Notifications You must be signed in to change notification settings

Cwuwhu/UNet-likeChangeDetection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 

Repository files navigation

A Table for a systematic review of UNet-Like change detection. For the complete article, please refer to C. Wu, L. Zhang, B. Du et al., “UNet-Like Remote Sensing Change Detection: A review of current models and research directions,” IEEE Geoscience and Remote Sensing Magazine, pp. 2-31, 2024. (https://ieeexplore.ieee.org/abstract/document/10616141)

APPENDIX TABLE I SYSTEMATIC REVIEW OF UNET-LIKE CHANGE DETECTION MODELS CORRESPONDING TO DIFFRENT BLOCKS

Name Year Encoder Structure Symmetry Encoder module Feature to Decoder Skip-connection Data fusion Loss
1 FC-EF[1] 2018 EF Sym Conv EF S-C EF CE
2 FC-Siam-Conc[1] 2018 Siam Sym Conv T1 S-C Conc CE
3 FC-Siam-Diff[1] 2018 Siam Sym Conv T1 S-C Dif CE
4 Jaturapitpornchai, et al. [2] 2019 EF Sym Conv EF S-C EF wBCE
5 FCN-PP[3] 2019 EF + Diff + Multivariate morphological reconstruction (MMR) Sym Conv EF + Pyramid pooling (PP) S-C EF wCE
6 Peng, et al. [4] 2019 EF Sym Res EF UNet++ EF wBCE + Dice
7 CDGAN[5] 2020 Siam Sym Conv Conc S-C Conc GAN
8 PGA-SiamNet[6] 2020 Siam Sym ASPP Co-attention S-C Change residual process BCE
9 Liu, et al. [7] 2020 EF Sym Depthwise separable conv EF S-C EF BCE + Dice
10 DTCDSCN[8] 2020 Siam Sym Squeeze and excitation block (SE Block) Dif + Spatial pyramid pooling module S-C Dif wBCE + Change detection loss (CDL) + Deep supervision + Multitask
11 Peng, et al. [9] 2020 EF Sym Res EF Attention + UNet++ EF wBCE + GAN (Segmentation adversarial loss + Entropy adversarial loss)
12 DDCNN[10] 2020 EF Sym Res EF UNet++ EF + Difference enhancement BCE
13 Sun, et al. [11] 2020 EF Sym Conv EF S-C EF Multi-task
14 IFN[12] 2020 Siam Sym Conv Conc S-C Conc BCE + Dice + Deep supervision
15 Yang, et al. [13] 2021 Siam Sym Res Conc + High-Level feature fusion block (HFFB) S-C Conc + Fusion block (FB) CE
16 HDFNet[14] 2021 Siam Sym Conv Fusion Steam + Conv S-C Conc Focal + Multilevel supervision
17 Adriano, et al. [15] 2021 Pseudo-Siam Sym Conv Conc + Attention gate S-C Conc + Attention gate CE
18 DSA-Net[16] 2021 Siam Sym Strided conv + Attention guided cross-layer addition (ACLA) Conc + ASPP S-C Conc + Spatial attention mechanism (SAM) Deep supervision + BCD
19 SNUNet-CD[17] 2021 Siam Sym Res T1 UNet++ Conc Ensemble channel attention module (ECAM) + wCE +Dice
20 MSPSNet[18] 2021 Siam Sym Res Conc + Parallel convolutional structure (PCS) S-C Conc + Parallel convolutional structure (PCS) wCE + Dice
21 MASNet[19] 2021 Siam Sym Selective kernel convolution (SKConv) Conc + Attention feature fusion module (AFFM) S-C Conc + Attention feature fusion module (AFFM) BCE
22 DP-CD-Net[20] 2021 Pseduo-Siam Sym Res Diff S-C + Decoder S-C Diff CE + Auxiliary loss (AUX loss)
23 DTCDN[21] 2021 EF + Translation Sym Depthwise & pointwise Conv EF UNet++ EF Weighted Focal + Deep supervision
24 Li, et al. [22] 2021 EF Sym Conv + ASPP EF S-C Conc wBCE + Dice
25 DCFF-Net[23] 2021 EF + Siam Sym Conv EF UNet++ Conc + Multi-features fusion (FF) module BCE + Self-adjusting dice loss (SADICE)
26 Multitask L-Unet[24] 2021 Time-series input + Siam Sym Conv Long short-term memory (LSTM) S-C Long short-term memory (LSTM) CE + Multi-task
27 SCDNET[25] 2021 Siam Sym Res T1/T2 + Multi-scale atrous convolution (MAC) S-C Diff + Attention CE + Deep Fusion
28 ADS-Net[26] 2021 Siam non-Sym Conv Dif + Conc + Attention Weighted sum Diff + Conc + Attention Deep supervision + Focal
29 BASNet[27] 2021 Siam Sym Res Conc + Multiscale-paired fusion module (MPFM) + Spatial pyramid pooling module (SPPM) S-C + Guiding flows + Max pooling Conc + Multiscale-paired fusion module (MPFM) BCE + Multi-level feature aggregation + Structural similarity (SSIM)
30 DCA-Net[28] 2021 Siam Sym Res Dual correlation attention module (DCAM) S-C Dual correlation attention module (DCAM) Bounding box regression loss + Change confidence prediction loss
31 DifUnet++[29] 2021 Siam + EF Sym Conv Dif + Conc UNet++ Dif + Conc Focal
32 CLNet[30] 2021 EF Sym Cross layer blocks (CLB) EF S-C EF wBCE + Dice
33 Siam-GL[31] 2021 Siam Sym Conv Conc + Binary change mask S-C Conc Weighted softmax + Multi-class change detection
34 CS-HSNet[32] 2021 Siam non-Sym Cross-Siamese Res2Net (CSRes2Net) module Hierarchical-split attention block + Conc Conc Hierarchical-split attention block + Conc nan
35 EGRCNN[33] 2022 Siam Sym Conv Difference analysis S-C Difference analysis Focal + Deep supervision + Edge constraint
36 UCDNet[34] 2022 Siam Sym Conv + Modified residual connection Conc S-C Conc + New spatial pyramid pooling (NSPP) block wCE + modified kappa loss
37 FCCDN[35] 2022 Siam Sym Squeeze and excitation ResNet (SE-ResNet) Nonlocal feature pyramid network (NL-FPN) + Dense fusion (DFM) S-C Dense fusion (DFM) Self-supervised learning + Multi-task + BCE + Dice
38 Siamese_AUNet[36] 2022 Siam Sym Conv + Feature attention model (FAM) ASPP + Conc S-C Conc BCE
39 ISNet[37] 2022 Siam Sym Res + Channel attention (CA) Margin maximization (MM) + Spatial attention (SA) S-C Margin maximization (MM) + Spatial attention (SA) Dice + CE
40 MCDnet [38] 2022 Siam Sym Conv + Bidirectional feature pyramid network (BiFPN) Change feature fusion module (CFFM) S-C Change feature fusion module (CFFM) Multi-task + Change contrast loss (CCL)
41 LWCDNet[39] 2022 EF Sym Artificial padding convolution (APC) EF + Convolutional block attention module (CBAM) S-C EF wCE + Lovász
42 ForkNet[40] 2022 Siam Sym Conv + Cross-resolution attention module (CRAM) + Feature pyramid network (FPN) Diff S-C + Feature pyramid network (FPN) Diff Pyramid Tversky loss + Focal
43 Forest-CD[41] 2022 Siam Sym Transformer Conc + Pyramid pooling module (PPM) S-C Conc Multi-layer stacking + OCR + Deep supervision + Focal + Dice
44 LGSAA-Net[42] 2022 Siam + Diff Image Sym Conv Diff + Conc + Scale-adaptive attention (SAA) + Multilayer perceptron based on patches embedding (MLPPE) S-C Diff + Conc + Scale-adaptive attention (SAA) + Multilayer perceptron based on patches embedding (MLPPE) nan
45 DARNet[43] 2022 Siam Sym Conv Hybrid attention module (HAM) Densely Connected Hybrid attention module (HAM) Deep supervision + BCE + Dice
46 EUNet[44] 2022 Siam Sym Encoder with efficient convolution module (EECM) Fusion operation (FO) UNet++ Fusion operation (FO) Multi-layer + wCE + Dice
47 FCDNet[45] 2022 Siam Sym Depthwise over-parameterized convolutional layer (DOConv) Diff + Multireceptive field position enhancement module (MRPEM) Densely Connected Diff + Multireceptive field position enhancement module (MRPEM) wCE + Dice
48 SwinSUNet[46] 2022 Siam Sym Swin Transformer Conc + Swin Transformer S-C Conc nan
49 EGDE-Net[47] 2022 Siam Sym Edge-guided Transformer blocks (EGTB) Dif + Feature differential enhancement modules (FDEM) S-C Dif + Feature differential enhancement modules (FDEM) BCE + Edge loss
50 SMD-Net[48] 2022 Siam Sym Res Conc + Siamese residual multi-kernel pooling module (SRMP) S-C Conc + Feature difference module (FDM) BCE + Tversky
51 SSANet[49] 2022 EF + Dif Sym Multicore channel-aligning attention (MCA) module + Feature differential reconfiguration (FDR) module EF + Addition S-C EF + Addition Batch balance contrast loss
52 DESSN[50] 2022 Siam Sym Asymmetric double convolution with Ghost (ADCG) + Difference enhancement (DE) module Conc + Spatial–spectral nonlocal (SSN) module S-C Difference enhancement (DE) module BCE
53 TransUNetCD [51] 2022 Siam Sym Conv Embedding + Transformer S-C Conc Difference enhance + Dice
54 Lv, et al. [52] 2022 Siam + Dif Sym Conv + Convolutional block attention module (CBAM) Multiscale dilation convolution module (MDCM) S-C Conc BCE
55 FHD[53] 2022 Siam Sym Mix Transformer (MiT) Time-specific feature (TSF) + Hierarchical differentiation (HD) modules S-C Time-specific feature (TSF) + Hierarchical differentiation (HD) modules CE
56 DPCC-Net[54] 2022 Siam non-Sym Conv Dual-perspective fusion (DPF) Conc Dual-perspective fusion (DPF) Tanimoto
57 CDENet[55] 2022 Siam Sym Conv Transformer + Content difference enhancement module (CDEM) S-C Content difference enhancement module (CDEM) BCE + Dice
58 HMCNet[56] 2022 Siam Sym Res Multilayer perceptron (MLP) S-C Conc wCE + Dice
59 STransUNet[57] 2022 Siam Sym Conv Transformer + Cross-enhanced adaptive fusion (CEAF) S-C Cross-enhanced adaptive fusion (CEAF) nan
60 DA-MSCDNet[58] 2022 Siam Sym Conv Domain adaptation-based feature constraints + Dif S-C Dif MK-MMD + Multi-layer stacking + BCE + Dice
61 HFA-Net[59] 2022 Siam Sym High frequency attention block (HFAB) Conc S-C Conc BCE
62 Li, et al. [60] 2022 Siam non-Sym Res Temporal feature interaction module (TFIM) Guided refinement module (GRM) Temporal feature interaction module (TFIM) BCE + Dice
63 SFCCD[61] 2022 Siam Sym Res Multiscale feature fusion module (MSFF) S-C Global channel attention module (GCA) + Multiscale feature fusion module (MSFF) Multi-task + BCE
64 PCFN[62] 2022 Siam Sym Res Conc S-C Conc Multi-task + Feature difference enhancement + wCE
65 DAFT[63] 2023 Siam Sym AFFormer Multilayer Conc S-C Differential features enhancement module (DFEM) BCE + Deep supervision
66 AMIO-Net[64] 2023 Siam Sym Conv + Multi-scale deep features Pyramid Pooling Attention Module (PPAM) + Conc S-C Conc CE + Dice
67 AFDE-Net[65] 2023 Siam Sym Conv Dif S-C Dif + Ensemble spatial-channel attention fusion (ESCAF) module wCE + Deep supervision
68 AFNUNET[66] 2023 EF Sym Res EF UNet++ EF Multi-layer features + Adaptive fusion module (AFM) + BCE + Bray-curtis ordination
69 ConvTransNet[67] 2023 Siam Sym CNN-Transformer Conc S-C Conc wCE
70 A2Net[68] 2023 Siam Sym Res Neighbor aggregation module (NAM) + Dif + Progressive change identifying module (PCIM) S-C Neighbor aggregation module (NAM) + Dif + Progressive change identifying module (PCIM) BCE + Dice + Deep supervision
71 Lv, et al. [69] 2023 Siam Sym Conv Conc + Position channel attention module (PCAM) S-C Conc + Multiscale information attention module (MIAM) Change gradient guided module + CE
72 WNet[70] 2023 Siam Sym Deformable Residual (D-Res) + Swin-Transformer Dif + Conc + CNN–Transformer fusion module (CTFM) S-C Dif + Conc + CNN–Transformer fusion module (CTFM) CE + Dice
73 SSCFNet[71] 2023 Siam non-Sym Res Dif + Spatial-spectral cross fusion module Add Dif + Spatial-spectral cross fusion module BCE + Deep supervision
74 TCIANet[72] 2023 Siam non-Sym Res Filter-based visual tokenizer (FVT) + Progressive sampling vision (PSM) + Transformer + Dif Conc Feature fusion module (FFM) + Contour-graph reasoning module (CGRM) + Dif CE
75 HSSENet[73] 2023 Siam Sym Conv + Transformer Conc + Spatiotemporal enhancement module (STEM) S-C Dif Deep supervision + CE
76 SAGNet[74] 2023 Siam non-Sym Res Global semantic aggregation module (GSAM) Add Dif + Cross-scale fusion module (CFM) + Conc + Bilateral feature fusion module (BFEM) BCE
77 DMINet[75] 2023 Siam non-Sym Conv Joint attention module + Dif + Conc Incremental aggregation Joint attention module +Dif + Conc CE + Deep supervision
78 DGANet[76] 2023 Siam non-Sym Conv Difference-guided aggregation module (DGAM) Conc Weighted metric module (WMM) Batch-balanced contrastive loss (BCL) + Change magnitude contrastive loss (CMCL)
79 ACAHNet[77] 2023 Siam Sym Conv Conc+ Semantic Generation + Asymmetric multihead crossover attention (AMCA) S-C Conc + Three branch aggregation (TBA) wCE + Dice
80 FMCD[78] 2023 Siam Sym EfficientNet Multilevel feature interaction module + Mix block S-C Mix attention block (MAB) BCE + Domain adaption loss
81 TSNet[79] 2023 Siam + Conc Sym EfficientNet ConvGRU + Dual channel attention module S-C ConvGRU + Dual channel attention module BCE + Dice
82 MFSNet[80] 2023 Siam Sym Conv Conc UNet++ Conc Deep supervision + BCE + Dice
83 HANet[81] 2023 Siam Sym Conv Hierarchical Attention Network (HAN) S-C Hierarchical Attention Network (HAN) wCE + Dice
84 T-Unet[82] 2023 Siam + Dif Sym Conv + Multi-branch spatial-spectral cross attention (MBSSCA) module Multi-branch spatial-spectral cross attention (MBSSCA) module S-C Multi-branch spatial-spectral cross attention (MBSSCA) module BCE + Dice
85 CGNet[83] 2023 Siam Sym Conv Conc + Change guide module (CGM) S-C Conc + Change guide module (CGM) CE + Deep supervision
86 SAAN[84] 2023 Siam Sym EfficientNet Conc S-C Similarity-guided attention flow module BCE + Dice + Deep supervision + Contrastive loss

*In the table, the abbreviations are explained as: early fusion (EF), Siamese structure (Siam), pseudo-Siamese structure (pseudo-Siam), symmetry (Sym), non-symmetry (Non-sym), convolution module (Conv), residual module (Res) module, concatenation (Conc), difference (Dif), features from one time (T1/T2), and skip-connection (S-C). These abbreviations mostly indicate the basic blocks for UNet-like change detection models.

REFERENCES

[1] R. C. Daudt, B. L. Saux, and A. Boulch, “Fully Convolutional Siamese Networks for Change Detection,” in 2018 25th IEEE International Conference on Image Processing (ICIP), 2018, pp. 4063-4067.

[2] R. Jaturapitpornchai, M. Matsuoka, N. Kanemoto, S. Kuzuoka, R. Ito, and R. Nakamura, “Newly Built Construction Detection in SAR Images Using Deep Learning,” Remote Sensing, vol. 11, no. 12, 2019.

[3] T. Lei, Y. Zhang, Z. Lv, S. Li, S. Liu, and A. K. Nandi, “Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 6, pp. 982-986, 2019.

[4] D. Peng, Y. Zhang, and H. Guan, “End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet++,” Remote Sensing, vol. 11, no. 11, p. 1382, 2019.

[5] B. Hou, Q. Liu, H. Wang, and Y. Wang, “From W-Net to CDGAN: Bitemporal Change Detection via Deep Learning Techniques,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 1790-1802, 2020.

[6] H. Jiang, X. Hu, K. Li, J. Zhang, J. Gong, and M. Zhang, “PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection,” Remote Sensing, vol. 12, no. 3, 2020.

[7] R. Liu, D. Jiang, L. Zhang, and Z. Zhang, “Deep Depthwise Separable Convolutional Network for Change Detection in Optical Aerial Images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 1109-1118, 2020.

[8] Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 5, pp. 811-815, 2021.

[9] D. Peng, L. Bruzzone, Y. Zhang, H. Guan, H. Ding, and X. Huang, “SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 7, pp. 5891-5906, 2021.

[10] X. Peng, R. Zhong, Z. Li, and Q. Li, “Optical Remote Sensing Image Change Detection Based on Attention Mechanism and Image Difference,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, pp. 7296-7307, 2021.

[11] Y. Sun, X. Zhang, J. Huang, H. Wang, and Q. Xin, “Fine-Grained Building Change Detection From Very High-Spatial-Resolution Remote Sensing Images Based on Deep Multitask Learning,” IEEE Geoscience and Remote Sensing Letters, pp. 1-5, 2020.

[12] C. Zhang et al., “A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, pp. 183-200, 2020/08/01/ 2020.

[13] L. Yang, Y. Chen, S. Song, F. Li, and G. Huang, “Deep Siamese Networks Based Change Detection with Remote Sensing Images,” Remote Sensing, vol. 13, no. 17, p. 3394, 2021.

[14] Y. Zhang, L. Fu, Y. Li, and Y. Zhang, “HDFNet: Hierarchical Dynamic Fusion Network for Change Detection in Optical Aerial Images,” Remote Sensing, vol. 13, no. 8, p. 1440, 2021.

[15] B. Adriano et al., “Learning from multimodal and multitemporal earth observation data for building damage mapping,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 175, pp. 132-143, 2021/05/01/ 2021.

[16] Q. Ding, Z. Shao, X. Huang, and O. Altan, “DSA-Net: A novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images,” International Journal of Applied Earth Observation and Geoinformation, vol. 105, p. 102591, 2021/12/25/ 2021.

[17] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images,” IEEE Geoscience and Remote Sensing Letters, pp. 1-5, 2021.

[18] Q. Guo, J. Zhang, S. Zhu, C. Zhong, and Y. Zhang, “Deep Multiscale Siamese Network with Parallel Convolutional Structure and Self-Attention for Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, pp. 1-1, 2021.

[19] J. Huang, Q. Shen, M. Wang, and M. Yang, “Multiple Attention Siamese Network for High-Resolution Image Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, pp. 1-1, 2021.

[20] X. Jiang, S. Xiang, M. Wang, and P. Tang, “Dual-Pathway Change Detection Network Based on the Adaptive Fusion Module,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2021.

[21] X. Li, Z. Du, Y. Huang, and Z. Tan, “A deep translation (GAN) based change detection network for optical and SAR remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 179, pp. 14-34, 2021/09/01/ 2021.

[22] X. Li, M. He, H. Li, and H. Shen, “A Combined Loss-Based Multiscale Fully Convolutional Network for High-Resolution Remote Sensing Image Change Detection,” IEEE Geoscience and Remote Sensing Letters, pp. 1-5, 2021.

[23] F. Pan, Z. Wu, Q. Liu, Y. Xu, and Z. Wei, “DCFF-Net: A Densely Connected Feature Fusion Network for Change Detection in High-Resolution Remote Sensing Images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 11974-11985, 2021.

[24] M. Papadomanolaki, M. Vakalopoulou, and K. Karantzalos, “A Deep Multitask Learning Framework Coupling Semantic Segmentation and Fully Convolutional LSTM Networks for Urban Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, pp. 7651-7668, 2021.

[25] D. Peng, L. Bruzzone, Y. Zhang, H. Guan, and P. He, “SCDNET: A novel convolutional network for semantic change detection in high resolution optical remote sensing imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 103, p. 102465, 2021/12/01/ 2021.

[26] D. Wang, X. Chen, M. Jiang, S. Du, B. Xu, and J. Wang, “ADS-Net:An Attention-Based deeply supervised network for remote sensing image change detection,” International Journal of Applied Earth Observation and Geoinformation, vol. 101, p. 102348, 2021/09/01/ 2021.

[27] H. Wei, R. Chen, C. Yu, H. Yang, and S. An, “BASNet: A Boundary-Aware Siamese Network for Accurate Remote Sensing Change Detection,” IEEE Geoscience and Remote Sensing Letters, pp. 1-1, 2021.

[28] L. Zhang, X. Hu, M. Zhang, Z. Shu, and H. Zhou, “Object-level change detection with a dual correlation attention-guided detector,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 177, pp. 147-160, 2021/07/01/ 2021.

[29] X. Zhang et al., “DifUnet++: A Satellite Images Change Detection Network Based on Unet++ and Differential Pyramid,” IEEE Geoscience and Remote Sensing Letters, pp. 1-5, 2021.

[30] Z. Zheng, Y. Wan, Y. Zhang, S. Xiang, D. Peng, and B. Zhang, “CLNet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 175, pp. 247-267, 2021/05/01/ 2021.

[31] Q. Zhu et al., “Land-Use/Land-Cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 184, pp. 63-78, 2022/02/01/ 2022.

[32] Q. Ke and P. Zhang, “CS-HSNet: A Cross-Siamese Change Detection Network Based on Hierarchical-Split Attention,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 9987-10002, 2021.

[33] B. Bai, W. Fu, T. Lu, and S. Li, “Edge-Guided Recurrent Convolutional Neural Network for Multitemporal Remote Sensing Image Building Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, pp. 1-13, 2021.

[34] K. S. Basavaraju, N. Sravya, S. Lal, J. Nalini, C. S. Reddy, and F. Dell’Acqua, “UCDNet: A Deep Learning Model for Urban Change Detection From Bi-Temporal Multispectral Sentinel-2 Satellite Images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-10, 2022.

[35] P. Chen, B. Zhang, D. Hong, Z. Chen, X. Yang, and B. Li, “FCCDN: Feature constraint network for VHR image change detection,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 187, pp. 101-119, 2022/05/01/ 2022.

[36] T. Chen, Z. Lu, Y. Yang, Y. Zhang, B. Du, and A. Plaza, “A Siamese Network Based U-Net for Change Detection in High Resolution Remote Sensing Images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 2357-2369, 2022.

[37] G. Cheng, G. Wang, and J. Han, “ISNet: Towards Improving Separability for Remote Sensing Image Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-11, 2022.

[38] Y. Deng et al., “Feature-Guided Multitask Change Detection Network,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 9667-9679, 2022.

[39] M. Han, R. Li, and C. Zhang, “LWCDNet: A Lightweight Fully Convolution Network for Change Detection in Optical Remote Sensing Imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022.

[40] H. He, Y. Chen, M. Li, and Q. Chen, “ForkNet: Strong Semantic Feature Representation and Subregion Supervision for Accurate Remote Sensing Change Detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 2142-2153, 2022.

[41] J. Jiang, J. Xiang, E. Yan, Y. Song, and D. Mo, “Forest-CD: Forest Change Detection Network Based on VHR Images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022.

[42] T. Lei, D. Xue, H. Ning, S. Yang, Z. Lv, and A. K. Nandi, “Local and Global Feature Learning With Kernel Scale-Adaptive Attention Network for VHR Remote Sensing Change Detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 7308-7322, 2022.

[43] Z. Li, C. Yan, Y. Sun, and Q. Xin, “A Densely Attentive Refinement Network for Change Detection Based on Very-High-Resolution Bitemporal Remote Sensing Images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-18, 2022.

[44] A. Raza, H. Huo, and T. Fang, “EUNet-CD: Efficient UNet++ for Change Detection of Very High-Resolution Remote Sensing Images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022.

[45] X. Xiang, D. Tian, N. Lv, and Q. Yan, “FCDNet: A Change Detection Network Based on Full-Scale Skip Connections and Coordinate Attention,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022.

[46] C. Zhang, L. Wang, S. Cheng, and Y. Li, “SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-13, 2022.

[47] Z. Chen et al., “EGDE-Net: A building change detection method for high-resolution remote sensing imagery based on edge guidance and differential enhancement,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 191, pp. 203-222, 2022/09/01/ 2022.

[48] X. Zhang et al., “SMD-Net: Siamese Multi-Scale Difference-Enhancement Network for Change Detection in Remote Sensing,” Remote Sensing, vol. 14, no. 7, p. 1580, 2022.

[49] K. Jiang, W. Zhang, J. Liu, F. Liu, and L. Xiao, “Joint Variation Learning of Fusion and Difference Features for Change Detection in Remote Sensing Images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-18, 2022.

[50] T. Lei et al., “Difference Enhancement and Spatial–Spectral Nonlocal Network for Change Detection in VHR Remote Sensing Images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-13, 2022.

[51] Q. Li, R. Zhong, X. Du, and Y. Du, “TransUNetCD: A Hybrid Transformer Network for Change Detection in Optical Remote-Sensing Images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-19, 2022.

[52] Z. Lv, F. Wang, G. Cui, J. A. Benediktsson, T. Lei, and W. Sun, “Spatial–Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-12, 2022.

[53] G. Pei and L. Zhang, “Feature Hierarchical Differentiation for Remote Sensing Image Change Detection,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022.

[54] Q. Shu, J. Pan, Z. Zhang, and M. Wang, “DPCC-Net: Dual-perspective change contextual network for change detection in high-resolution remote sensing images,” International Journal of Applied Earth Observation and Geoinformation, vol. 112, p. 102940, 2022/08/01/ 2022.

[55] D. Song, Y. Dong, and X. Li, “Context and Difference Enhancement Network for Change Detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 9457-9467, 2022.

[56] L. Wang and H. Li, “HMCNet: Hybrid Efficient Remote Sensing Images Change Detection Network Based on Cross-Axis Attention MLP and CNN,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-14, 2022.

[57] J. Yuan, L. Wang, and S. Cheng, “STransUNet: A Siamese TransUNet-Based Remote Sensing Image Change Detection Network,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 9241-9253, 2022.

[58] C. Zhang et al., “A domain adaptation neural network for change detection with heterogeneous optical and SAR remote sensing images,” International Journal of Applied Earth Observation and Geoinformation, vol. 109, p. 102769, 2022/05/01/ 2022.

[59] H. Zheng et al., “HFA-Net: High frequency attention siamese network for building change detection in VHR remote sensing images,” Pattern Recognition, vol. 129, p. 108717, 2022/09/01/ 2022.

[60] Z. Li, C. Tang, L. Wang, and A. Y. Zomaya, “Remote Sensing Change Detection via Temporal Feature Interaction and Guided Refinement,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-11, 2022.

[61] Q. Shen, J. Huang, M. Wang, S. Tao, R. Yang, and X. Zhang, “Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 189, pp. 78-94, 2022/07/01/ 2022.

[62] H. Xia, Y. Tian, L. Zhang, and S. Li, “A Deep Siamese Postclassification Fusion Network for Semantic Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-16, 2022.

[63] Z. Fu, J. Li, Z. Chen, L. Ren, and Z. Hua, “DAFT: Differential Feature Extraction Network Based on Adaptive Frequency Transformer for Remote Sensing Change Detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 5061-5076, 2023.

[64] W. Gao, Y. Sun, X. Han, Y. Zhang, L. Zhang, and Y. Hu, “AMIO-Net: An Attention-Based Multiscale Input–Output Network for Building Change Detection in High-Resolution Remote Sensing Images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 2079-2093, 2023.

[65] S. Holail, T. Saleh, X. Xiao, and D. Li, “AFDE-Net: Building Change Detection Using Attention-Based Feature Differential Enhancement for Satellite Imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1-5, 2023.

[66] J. Li, S. Li, and F. Wang, “Adaptive Fusion NestedUNet for Change Detection Using Optical Remote Sensing Images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 5374-5386, 2023.

[67] W. Li, L. Xue, X. Wang, and G. Li, “ConvTransNet: A CNN–Transformer Network for Change Detection With Multiscale Global–Local Representations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023.

[68] Z. Li et al., “Lightweight Remote Sensing Change Detection With Progressive Feature Aggregation and Supervised Attention,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-12, 2023.

[69] Z. Lv, P. Zhong, W. Wang, Z. You, and N. Falco, “Multiscale Attention Network Guided With Change Gradient Image for Land Cover Change Detection Using Remote Sensing Images,” IEEE Geoscience and Remote Sensing Letters, vol. 20, pp. 1-5, 2023.

[70] X. Tang, T. Zhang, J. Ma, X. Zhang, F. Liu, and L. Jiao, “WNet: W-Shaped Hierarchical Network for Remote-Sensing Image Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-14, 2023.

[71] J. Wang et al., “SSCFNet: A Spatial-Spectral Cross Fusion Network for Remote Sensing Change Detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 4000-4012, 2023.

[72] X. Xu, J. Li, and Z. Chen, “TCIANet: Transformer-Based Context Information Aggregation Network for Remote Sensing Image Change Detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 1951-1971, 2023.

[73] L. Yan and J. Jiang, “A Hybrid Siamese Network With Spatiotemporal Enhancement and Two-Level Feature Fusion for Remote Sensing Image Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-17, 2023.

[74] H. Yin et al., “Attention-guided siamese networks for change detection in high resolution remote sensing images,” International Journal of Applied Earth Observation and Geoinformation, vol. 117, p. 103206, 2023/03/01/ 2023.

[75] Y. Feng, J. Jiang, H. Xu, and J. Zheng, “Change Detection on Remote Sensing Images Using Dual-Branch Multilevel Intertemporal Network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023.

[76] M. Zhang, Q. Li, Y. Miao, Y. Yuan, and Q. Wang, “Difference-Guided Aggregation Network With Multiimage Pixel Contrast for Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-14, 2023.

[77] X. Zhang, S. Cheng, L. Wang, and H. Li, “Asymmetric Cross-Attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023.

[78] C. Zhao et al., “High-Resolution Remote Sensing Bitemporal Image Change Detection Based on Feature Interaction and Multitask Learning,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-14, 2023.

[79] Y. Zhao, P. Chen, Z. Chen, Y. Bai, Z. Zhao, and X. Yang, “A Triple-Stream Network With Cross-Stage Feature Fusion for High-Resolution Image Change Detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-17, 2023.

[80] Z. Huang and H. You, “MFSFNet: Multi-Scale Feature Subtraction Fusion Network for Remote Sensing Image Change Detection,” Remote Sensing, vol. 15, no. 15, p. 3740, 2023.

[81] C. Han, C. Wu, H. Guo, M. Hu, and H. Chen, “HANet: A hierarchical attention network for change detection with bi-temporal very-high-resolution remote sensing images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, pp. 1-17, 2023.

[82] H. Zhong and C. Wu, "T-UNet: Triplet UNet for Change Detection in High-Resolution Remote Sensing Images," Available: https://arxiv.org/abs/2308.02356

[83] C. Han, C. Wu, H. Guo, M. Hu, J. Li, and H. Chen, “Change Guiding Network: Incorporating Change Prior to Guide Change Detection in Remote Sensing Imagery,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 8395-8407, 2023.

[84] H. Guo, X. Su, C. Wu, B. Du, and L. Zhang, "SAAN: Similarity-aware attention flow network for change detection with VHR remote sensing images," Available: https://arxiv.org/abs/2308.14570

About

SYSTEMATIC REVIEW OF UNET-LIKE CHANGE DETECTION MODELS CORRESPONDING TO DIFFRENT BLOCKS

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published