Skip to content

Commit

Permalink
Merge pull request #1717 from JacquesOlivierLachaud/AddTriangleToConv…
Browse files Browse the repository at this point in the history
…exityHelper

Add triangle to convexity helper
  • Loading branch information
dcoeurjo authored Jun 8, 2024
2 parents 7bd303e + 2d155b3 commit 20c1d41
Show file tree
Hide file tree
Showing 9 changed files with 640 additions and 13 deletions.
7 changes: 7 additions & 0 deletions ChangeLog.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,11 @@
- The WindingNumberShape class can output the raw winding number values
(David Coeurjolly,[#1719](https://github.com/DGtal-team/DGtal/issues/1719))

- *Geometry package*
- Add creation of polytopes from segments and triangles in
ConvexityHelper and 3-5xfaster full subconvexity tests for triangles
in DigitalConvexity (Jacques-Olivier Lachaud,
[#1717](https://github.com/DGtal-team/DGtal/pull/1717))

- *Project*
- Add CMake option DGTAL_WRAP_PYTHON (Pablo Hernandez-Cerdan,
Expand Down Expand Up @@ -96,6 +101,8 @@
- *Geometry package*
- Fix Issue #1676 in testStabbingCircleComputer (Tristan Roussillon,
[#1688](https://github.com/DGtal-team/DGtal/pull/1688)
- Fix BoundedLatticePolytopeCounter::countInterior method (Jacques-Olivier Lachaud,
[#1717](https://github.com/DGtal-team/DGtal/pull/1717))
- Fix const attribute that shouldn't be in FreemanChain (Colin Weill--Duflos,
[#1723](https://github.com/DGtal-team/DGtal/pull/1723))

Expand Down
18 changes: 14 additions & 4 deletions src/DGtal/geometry/doc/moduleDigitalConvexity.dox
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,12 @@ Lattice point retrieval services:
- BoundedLatticePolytope::getBoundaryPoints outputs the lattice points on the boundary of the polytope
- BoundedLatticePolytope::insertPoints inserts the lattice points in the polytope into some point set

The class ConvexityHelper also provides several static methods related to BoundedLatticePolytope:
- ConvexityHelper::computeLatticePolytope computes a BoundedLatticePolytope from an arbitrary range of points (use QuickHull algorithm, \see moduleQuickHull).
- ConvexityHelper::compute3DTriangle computes the BoundedLatticePolytope enclosing a 3D triangle (faster way than above, but limited to 3D triangles).
- ConvexityHelper::computeDegeneratedTriangle computes the BoundedLatticePolytope enclosing a degenerated triangle (the three points are aligned or non distinct, but may lie in arbitrary dimension).
- ConvexityHelper::computeSegment computes the BoundedLatticePolytope enclosing a segment in arbitrary dimension.


@subsection dgtal_dconvexity_sec22 Building a set of lattice cells from digital points

Expand Down Expand Up @@ -304,8 +310,8 @@ bool ok = simplex_cover.subset( point_cover ); // true

Morphological services (since 1.3):
- DigitalConvexity::makePolytope( const PointRange& X, bool safe ) const builds the tightest polytope enclosing the digital set \a X
- DigitalConvexity::isFullyConvex( const PointRange& X, bool convex0, bool safe ) const checks the full convexity of the digital set \a X
- DigitalConvexity::is0Convex( const PointRange& X, bool safe ) const checks the usual digital convexity (H-convexity or 0-convexity) of the digital set \a X
- DigitalConvexity::isFullyConvex( const PointRange& X, bool convex0 ) const checks the full convexity of the digital set \a X
- DigitalConvexity::is0Convex( const PointRange& X ) const checks the usual digital convexity (H-convexity or 0-convexity) of the digital set \a X
- DigitalConvexity::U( Dimension i, const PointRange& X ) const performs the digital Minkowski sum of \a X along direction \a i

The following snippet shows that a 4D ball is indeed fully convex.
Expand Down Expand Up @@ -334,9 +340,13 @@ Convexity services:
- DigitalConvexity::isKConvex tells if a given polytope is k-convex
- DigitalConvexity::isFullyConvex tells if a given polytope is fully convex
- DigitalConvexity::isKSubconvex tells if a given polytope is k-subconvex to some cell cover (i.e. k-tangent)
- DigitalConvexity::isKSubconvex( const Point&, const Point&, const CellGeometry&, const Dimension ) const tells if the Euclidean straight segment \f$ \lbrack a,b \rbrack \f$ is k-subconvex (i.e. k-tangent) to the given cell cover.
- DigitalConvexity::isKSubconvex( const Point& a, const Point& b, const CellGeometry& C, const Dimension k ) const tells if the Euclidean straight segment \f$ \lbrack a,b \rbrack \f$ is k-subconvex (i.e. k-tangent) to the given cell cover.
- DigitalConvexity::isFullySubconvex tells if a given polytope is fully subconvex to some cell cover
- DigitalConvexity::isFullySubconvex( const Point&, const Point&, const CellGeometry& ) const tells if the Euclidean straight segment \f$ \lbrack a,b \rbrack \f$ is fully k-subconvex (i.e. tangent) to the given cell cover.
- DigitalConvexity::isFullySubconvex( const Point& a, const Point& b, const CellGeometry& C ) const tells if the Euclidean straight segment \f$ \lbrack a,b \rbrack \f$ is fully k-subconvex (i.e. tangent) to the given cell cover.
- DigitalConvexity::isFullySubconvex( const LatticePolytope& P, const LatticeSet& StarX ) const tells if a given polytope is fully subconvex to a set of cells, represented as a LatticeSetByIntervals.
- DigitalConvexity::isFullySubconvex( const PointRange& Y, const LatticeSet& StarX ) const tells is the given range of points is fully subconvex to a set of cells, represented as a LatticeSetByIntervals.
- DigitalConvexity::isFullySubconvex( const Point& a, const Point& b, const LatticeSet& StarX ) const tells if the given pair of points is fully subconvex to a set of cells, represented as a LatticeSetByIntervals (three times faster than previous generic method).
- DigitalConvexity::isFullySubconvex( const Point& a, const Point& b, const Point& c, const LatticeSet& StarX ) const tells if the given triplets of points is fully subconvex to a set of cells, represented as a LatticeSetByIntervals (five times faster than previous generic method).

@subsection dgtal_dconvexity_sec25 Ehrhart polynomial of a lattice polytope

Expand Down
3 changes: 2 additions & 1 deletion src/DGtal/geometry/volumes/BoundedLatticePolytopeCounter.ih
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,8 @@ interiorIntersectionIntervalAlongAxis( Point p, Dimension a ) const
const Integer x_a = x_min;
p[ a ] = x_a;
bool empty = false;
for ( Dimension k = 2*dimension; k < A.size(); k++ )
// We must take into account also bounding box constraints for interior points.
for ( Dimension k = 0; k < A.size(); k++ )
{
const Integer c = A[ k ].dot( p );
const Integer n = A[ k ][ a ];
Expand Down
46 changes: 45 additions & 1 deletion src/DGtal/geometry/volumes/ConvexityHelper.h
Original file line number Diff line number Diff line change
Expand Up @@ -379,7 +379,51 @@ namespace DGtal
static
PointRange
computeDegeneratedConvexHullVertices( PointRange& input_points );


/// Computes the lattice polytope enclosing a triangle in
/// dimension 3. Takes care of degeneracies (non distinct points
/// or alignment).
///
/// @param a any point
/// @param b any point
/// @param c any point
///
/// @param[in] make_minkowski_summable Other constraints are added
/// so that we can perform axis aligned Minkowski sums on this
/// polytope. Useful for checking full convexity (see
/// moduleDigitalConvexity).
///
/// @return the tightiest bounded lattice polytope
/// (i.e. H-representation) including the given range of points.
static
LatticePolytope
compute3DTriangle( const Point& a, const Point& b, const Point& c,
bool make_minkowski_summable = false );

/// Computes the lattice polytope enclosing a degenerated
/// triangle. The points must be aligned (or non distinct).
///
/// @param a any point
/// @param b any point
/// @param c any point
///
/// @return the tightiest bounded lattice polytope
/// (i.e. H-representation) including the given range of points.
static
LatticePolytope
computeDegeneratedTriangle( const Point& a, const Point& b, const Point& c );

/// Computes the lattice polytope enclosing a segment.
///
/// @param a any point
/// @param b any point
///
/// @return the tightiest bounded lattice polytope
/// (i.e. H-representation) including the given range of
/// points. It is always Minkowski summable.
static
LatticePolytope
computeSegment( const Point& a, const Point& b );

/// @}

Expand Down
133 changes: 129 additions & 4 deletions src/DGtal/geometry/volumes/ConvexityHelper.ih
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,129 @@ computeDegeneratedLatticePolytope
false, false );
}

//-----------------------------------------------------------------------------
template < int dim, typename TInteger, typename TInternalInteger >
typename DGtal::ConvexityHelper< dim, TInteger, TInternalInteger>::LatticePolytope
DGtal::ConvexityHelper< dim, TInteger, TInternalInteger>::compute3DTriangle
( const Point& a, const Point& b, const Point& c,
bool make_minkowski_summable )
{
if constexpr( dim != 3 ) return LatticePolytope();
using Op = detail::BoundedRationalPolytopeSpecializer< dimension, Integer>;
typedef typename LatticePolytope::Domain Domain;
typedef typename LatticePolytope::HalfSpace PolytopeHalfSpace;
// Compute domain
const Vector ab = b - a;
const Vector bc = c - b;
const Vector ca = a - c;
const Vector n = Op::crossProduct( ab, bc );
if ( n == Vector::zero )
return computeDegeneratedTriangle( a, b, c );
const Point low = a.inf( b ).inf( c );
const Point high = a.sup( b ).sup( c );
// Initialize polytope
std::vector< PolytopeHalfSpace > PHS;
PHS.reserve( make_minkowski_summable ? 11 : 5 );
const Integer n_a = n.dot( a );
const Vector u = Op::crossProduct( ab, n );
const Vector v = Op::crossProduct( bc, n );
const Vector w = Op::crossProduct( ca, n );
PHS.emplace_back( n, n_a );
PHS.emplace_back( -n, -n_a );
if ( ! make_minkowski_summable )
{ // It is enough to have one constraint per edge.
PHS.emplace_back( u, u.dot( a ) );
PHS.emplace_back( v, v.dot( b ) );
PHS.emplace_back( w, w.dot( c ) );
}
else
{ // Compute additionnal constraints on edges so that the
// Minkowski sum with axis-aligned edges is valid.
for ( Integer d = -1; d <= 1; d += 2 )
for ( Dimension k = 0; k < dim; k++ )
{
const Vector i = Vector::base( k, d );
const Vector eab = Op::crossProduct( ab, i );
const Integer eab_a = eab.dot( a );
if ( eab.dot( c ) < eab_a ) // c must be below plane (a,eab)
PHS.emplace_back( eab, eab_a );
const Vector ebc = Op::crossProduct( bc, i );
const Integer ebc_b = ebc.dot( b );
if ( ebc.dot( a ) < ebc_b ) // a must be below plane (b,ebc)
PHS.emplace_back( ebc, ebc_b );
const Vector eca = Op::crossProduct( ca, i );
const Integer eca_c = eca.dot( c );
if ( eca.dot( b ) < eca_c ) // b must be below plane (c,eca)
PHS.emplace_back( eca, eca_c );
}
}
return LatticePolytope( Domain( low, high ),
PHS.cbegin(), PHS.cend(),
make_minkowski_summable, false );
}

//-----------------------------------------------------------------------------
template < int dim, typename TInteger, typename TInternalInteger >
typename DGtal::ConvexityHelper< dim, TInteger, TInternalInteger>::LatticePolytope
DGtal::ConvexityHelper< dim, TInteger, TInternalInteger>::
computeDegeneratedTriangle
( const Point& a, const Point& b, const Point& c )
{
if ( a == b ) return computeSegment( a, c );
if ( ( a == c ) || ( b == c ) ) return computeSegment( a, b );
// The three points are distinct, hence aligned. One is in-between the two others.
const Point low = a.inf( b ).inf( c );
const Point high = a.sup( b ).sup( c );
for ( Dimension k = 0; k < dim; k++ )
{
const auto lk = low [ k ];
const auto hk = high[ k ];
if ( ( a[ k ] != lk ) && ( a[ k ] != hk ) ) return computeSegment( b, c );
if ( ( b[ k ] != lk ) && ( b[ k ] != hk ) ) return computeSegment( a, c );
if ( ( c[ k ] != lk ) && ( c[ k ] != hk ) ) return computeSegment( a, b );
}
trace.error() << "[ConvexityHelper::computeSegmentFromDegeneratedTriangle] "
<< "Should never arrive here." << std::endl;
return computeSegment( a, a );
}

//-----------------------------------------------------------------------------
template < int dim, typename TInteger, typename TInternalInteger >
typename DGtal::ConvexityHelper< dim, TInteger, TInternalInteger>::LatticePolytope
DGtal::ConvexityHelper< dim, TInteger, TInternalInteger>::computeSegment
( const Point& a, const Point& b )
{
if constexpr( dim != 3 ) return LatticePolytope();
using Op = detail::BoundedRationalPolytopeSpecializer< dimension, Integer>;
typedef typename LatticePolytope::Domain Domain;
typedef typename LatticePolytope::HalfSpace PolytopeHalfSpace;
// Compute domain
const Point low = a.inf( b );
const Point high = a.sup( b );
const Vector ab = b - a;
bool degenerate = ( ab == Vector::zero );
// Initialize polytope
std::vector< PolytopeHalfSpace > PHS;
if ( degenerate )
return LatticePolytope( Domain( low, high ), PHS.cbegin(), PHS.cend(), true, false );
PHS.reserve( 2*dim );
// Compute additionnal constraints on edges so that the
// Minkowski sum with axis-aligned edges is valid.
for ( Integer d = -1; d <= 1; d += 2 )
for ( Dimension k = 0; k < dim; k++ )
{
const Vector i = Vector::base( k, d );
const Vector e = Op::crossProduct( ab, i );
if ( e != Vector::zero )
{
const Integer e_a = e.dot( a );
PHS.emplace_back( e, e_a );
}
}
return LatticePolytope( Domain( low, high ), PHS.cbegin(), PHS.cend(), true, false );
}


//-----------------------------------------------------------------------------
template < int dim, typename TInteger, typename TInternalInteger >
typename DGtal::ConvexityHelper< dim, TInteger, TInternalInteger>::PointRange
Expand Down Expand Up @@ -306,10 +429,12 @@ computeLatticePolytope
// Compute domain
Point l = input_points[ 0 ];
Point u = input_points[ 0 ];
for ( const auto& p : input_points ) {
l = l.inf( p );
u = u.sup( p );
}
for ( std::size_t i = 1; i < input_points.size(); i++ )
{
const auto& p = input_points[ i ];
l = l.inf( p );
u = u.sup( p );
}
Domain domain( l, u );
// Compute convex hull
ConvexHull hull;
Expand Down
44 changes: 43 additions & 1 deletion src/DGtal/geometry/volumes/DigitalConvexity.h
Original file line number Diff line number Diff line change
Expand Up @@ -437,6 +437,24 @@ namespace DGtal
/// generic since the two other methods require a Minkowski
/// summable polytope, i.e. `P.canBeSummed() == true`.
bool isFullySubconvex( const PointRange& Y, const LatticeSet& StarX ) const;


/// Tells if the non-degenerated 3D triangle a,b,c is digitally
/// fully subconvex to some lattice set \a Star_X, i.e. the cell
/// cover of some set X represented by lattice points.
///
/// @param a any 3D point (distinct from the two others)
/// @param b any 3D point (distinct from the two others)
/// @param c any 3D point (distinct from the two others)
///
/// @param StarX any lattice set representing an open cubical complex.
/// @return 'true' iff Y is digitally fully subconvex to X.
///
/// @note This method is supposed to be faster than the others,
/// but is limited to 3D triangles.
bool isFullySubconvex( const Point& a, const Point& b, const Point& c,
const LatticeSet& StarX ) const;


/// Tells if a given segment from \a a to \a b is digitally
/// k-subconvex (i.e. k-tangent) to some cell cover \a C. The
Expand Down Expand Up @@ -491,7 +509,7 @@ namespace DGtal
/// polytope and then checking if it subconvex.
bool isFullySubconvex( const Point& a, const Point& b,
const LatticeSet& StarX ) const;

/// Given a range of distinct points \a X, computes the tightiest
/// polytope that enclosed it. Note that this polytope may contain
/// more lattice points than the given input points.
Expand Down Expand Up @@ -537,6 +555,30 @@ namespace DGtal
LatticeSet StarCvxH( const PointRange& X,
Dimension axis = dimension ) const;

/// Builds the cell complex `Star(CvxH({a,b,c}))` for `a,b,c` a
/// non-degenerate 3D triangle, represented as a lattice set (stacked
/// row representation).
///
/// @param a any 3D point (distinct from the two others)
/// @param b any 3D point (distinct from the two others)
/// @param c any 3D point (distinct from the two others)
///
/// @param axis specifies the projection axis for the row
/// representation if below space dimension, otherwise chooses the
/// axis that minimizes memory/computations.
///
/// @return the range of cells touching the triangle `abc`,
/// represented as a lattice set (cells are represented with
/// Khalimsky coordinates). If the triangle is degenerate (a,b,c
/// not distinct or aligned), then it returns an empty range of
/// cells.
///
/// @note It is useful to specify an axis if you wish later to
/// compare or make operations with several lattice sets. They
/// must indeed have the same axis.
LatticeSet StarCvxH( const Point& a, const Point& b, const Point& c,
Dimension axis = dimension ) const;

/// Computes the number of cells in Star(CvxH(X)) for X a digital set.
///
/// @param X any range of lattice points
Expand Down
Loading

0 comments on commit 20c1d41

Please sign in to comment.