-
Notifications
You must be signed in to change notification settings - Fork 57
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
--- | ||
title: Dfs2 - Snow Compare | ||
jupyter: python3 | ||
--- | ||
|
||
|
||
|
||
## Using This Notebook | ||
- Provides a simple differencing tool to compare two Dfs2 files, in this case MIKE SHE and MODIS snow cover | ||
- Due to the ipywidgets controls which dynamically query Dfs2 files, this notebook is best downloaded from the right hand menu using the Jupyter link, and executed locally | ||
- Modify the inputs section cell to provide file paths and then execute all cells | ||
- Use the horizontal slider controls in the Analysis section to move back and forth in time for each Dfs2. A simple grid calculation will be performed showing which cells have lower, similar, or higher values, allowing you to identify areas of concern for further investigation | ||
- If the notebook is running as expected, the Analysis section will appear as follows: | ||
|
||
![Example of Analysis section](../../images/dfs2_snowcompare_preview.png) | ||
|
||
## Environment Setup | ||
- The following packages were used at the time of development, and you may be able to use more recent versions: | ||
- ipykernel 6.29.0 | ||
- mikeio 1.6.3 | ||
- matplotlib 3.8.2 | ||
- ipywidgets 8.1.5 | ||
|
||
```{python} | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import mikeio | ||
import ipywidgets as widgets | ||
``` | ||
|
||
## Inputs Section | ||
|
||
```{python} | ||
mikeSheSnowDfs2Path = "../../data/MikeSheExtract.dfs2" | ||
modisSnowDfs2Path = "../../data/ModisExtract.dfs2" | ||
mikeSheSnowDfs2 = mikeio.read(mikeSheSnowDfs2Path) | ||
modisSnowDfs2 = mikeio.read(modisSnowDfs2Path) | ||
``` | ||
|
||
## Functions Section | ||
|
||
```{python} | ||
def sliders_changed(msheSlider, modisSlider): | ||
modisItemName = 'Snow Cover' | ||
msheItemName = 'Fraction of cell area covered by Snow' | ||
timeIndex = modisSnowDfs2[modisItemName].time.get_loc(modisSlider) | ||
modisSingleTimestep = modisSnowDfs2[modisItemName].isel( | ||
time=timeIndex) / 100.0 | ||
timeIndex = mikeSheSnowDfs2[msheItemName].time.get_loc(msheSlider) | ||
mikeSheSingleTimestep = mikeSheSnowDfs2[msheItemName].isel(time=timeIndex) | ||
# use nans in MSHE to set nans in MODIS to mask out catchment | ||
modisSingleTimestep.values = np.where(np.isnan( | ||
mikeSheSingleTimestep.values), mikeSheSingleTimestep.values, modisSingleTimestep.values) | ||
modisSingleDataArray = modisSingleTimestep.to_xarray() | ||
modisSingleDataArray.attrs['units'] = 'Fraction' | ||
# 3 column layout | ||
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(21, 5)) | ||
modisSingleDataArray.plot.pcolormesh( | ||
ax=ax1, vmin=0.0, vmax=1.0, cmap="jet") | ||
ax1.set_title('MODIS') | ||
mikeSheSingleDataArray = mikeSheSingleTimestep.to_xarray() | ||
mikeSheSingleDataArray.attrs['units'] = 'Fraction' | ||
mikeSheSingleDataArray.plot.pcolormesh( | ||
ax=ax2, vmin=0.0, vmax=1.0, cmap="jet") | ||
ax2.set_title('MIKE SHE') | ||
diff = modisSingleTimestep.copy() | ||
diff.values = modisSingleTimestep.values - mikeSheSingleTimestep.values | ||
categories = ['MSHE Higher', 'Similar', 'Similar', 'MODIS Higher'] | ||
colors = ['yellow', 'green', 'red'] | ||
boundaries = [-1.0, -0.1, 0.1, 1.0] | ||
cmap = mpl.colors.ListedColormap(colors) | ||
norm = mpl.colors.BoundaryNorm(boundaries, cmap.N) | ||
diffPlot = diff.to_xarray().plot.pcolormesh(ax=ax3, cmap=cmap, norm=norm) | ||
cbar = diffPlot.colorbar | ||
cbar.set_ticklabels(categories) | ||
cbar.set_label(None) | ||
ax3.set_title('Difference (MODIS - MIKE SHE)') | ||
plt.tight_layout() | ||
style = {'description_width': 'initial'} | ||
msheSlider = widgets.SelectionSlider( | ||
options=mikeSheSnowDfs2.time, | ||
value=mikeSheSnowDfs2.time[0], | ||
description='MSHE Timestep', | ||
disabled=False, | ||
continuous_update=False, | ||
orientation='horizontal', | ||
readout=True, | ||
style=style, | ||
layout=widgets.Layout(width='800px', margin='0 30px 0 0 ') | ||
) | ||
# constrain the modis timesteps to the mshe, as modis covers far more | ||
modis_time_slicer = modisSnowDfs2.time.slice_indexer( | ||
start=mikeSheSnowDfs2.time[0], end=mikeSheSnowDfs2.time[-1]) | ||
filtered_modis_times = modisSnowDfs2.time[modis_time_slicer] | ||
modisSlider = widgets.SelectionSlider( | ||
options=filtered_modis_times, | ||
value=filtered_modis_times[0], | ||
description='MODIS Timestep', | ||
disabled=False, | ||
continuous_update=False, | ||
orientation='horizontal', | ||
readout=True, | ||
style=style, | ||
layout=widgets.Layout(width='800px', margin='0 30px 0 0 ') | ||
) | ||
``` | ||
|
||
## Analysis Section | ||
|
||
- This section uses ipywidgets to make dynamic queries to the Dfs2 files, so it can only be run locally after you have downloaded this notebook | ||
|
||
```{python} | ||
ui = widgets.HBox([modisSlider, msheSlider]) | ||
out = widgets.interactive_output(sliders_changed, {'msheSlider' : msheSlider, 'modisSlider' : modisSlider}) | ||
display(ui, out) | ||
``` |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file not shown.