-
Notifications
You must be signed in to change notification settings - Fork 121
/
blockwise_sa.h
1113 lines (1057 loc) · 39.5 KB
/
blockwise_sa.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef BLOCKWISE_SA_H_
#define BLOCKWISE_SA_H_
#include <stdint.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <stdexcept>
#include "assert_helpers.h"
#include "diff_sample.h"
#include "multikey_qsort.h"
#include "random_source.h"
#include "binary_sa_search.h"
#include "zbox.h"
#include "alphabet.h"
#include "timer.h"
#include "ds.h"
#include "mem_ids.h"
#include "word_io.h"
using namespace std;
// Helpers for printing verbose messages
#ifndef VMSG_NL
#define VMSG_NL(...) \
if(this->verbose()) { \
stringstream tmp; \
tmp << __VA_ARGS__ << endl; \
this->verbose(tmp.str()); \
}
#endif
#ifndef VMSG
#define VMSG(...) \
if(this->verbose()) { \
stringstream tmp; \
tmp << __VA_ARGS__; \
this->verbose(tmp.str()); \
}
#endif
/**
* Abstract parent class for blockwise suffix-array building schemes.
*/
template<typename TStr>
class BlockwiseSA {
public:
BlockwiseSA(const TStr& __text,
TIndexOffU __bucketSz,
bool __sanityCheck = false,
bool __passMemExc = false,
bool __verbose = false,
ostream& __logger = cout) :
_text(__text),
_bucketSz(max<TIndexOffU>(__bucketSz, 2u)),
_sanityCheck(__sanityCheck),
_passMemExc(__passMemExc),
_verbose(__verbose),
_itrBucket(EBWTB_CAT),
_itrBucketPos(OFF_MASK),
_itrPushedBackSuffix(OFF_MASK),
_logger(__logger)
{ }
virtual ~BlockwiseSA() { }
/**
* Get the next suffix; compute the next bucket if necessary.
*/
virtual TIndexOffU nextSuffix() = 0;
/**
* Return true iff the next call to nextSuffix will succeed.
*/
bool hasMoreSuffixes() {
if(_itrPushedBackSuffix != OFF_MASK) return true;
try {
_itrPushedBackSuffix = nextSuffix();
} catch(out_of_range& e) {
assert_eq(OFF_MASK, _itrPushedBackSuffix);
return false;
}
return true;
}
/**
* Reset the suffix iterator so that the next call to nextSuffix()
* returns the lexicographically-first suffix.
*/
void resetSuffixItr() {
_itrBucket.clear();
_itrBucketPos = OFF_MASK;
_itrPushedBackSuffix = OFF_MASK;
reset();
assert(suffixItrIsReset());
}
/**
* Returns true iff the next call to nextSuffix() returns the
* lexicographically-first suffix.
*/
bool suffixItrIsReset() {
return _itrBucket.size() == 0 &&
_itrBucketPos == OFF_MASK &&
_itrPushedBackSuffix == OFF_MASK &&
isReset();
}
const TStr& text() const { return _text; }
TIndexOffU bucketSz() const { return _bucketSz; }
bool sanityCheck() const { return _sanityCheck; }
bool verbose() const { return _verbose; }
ostream& log() const { return _logger; }
size_t size() const { return _text.length()+1; }
protected:
/// Reset back to the first block
virtual void reset() = 0;
/// Return true iff reset to the first block
virtual bool isReset() = 0;
/**
* Grab the next block of sorted suffixes. The block is guaranteed
* to have at most _bucketSz elements.
*/
virtual void nextBlock(int cur_block, int tid = 0) = 0;
/// Return true iff more blocks are available
virtual bool hasMoreBlocks() const = 0;
/// Optionally output a verbose message
void verbose(const string& s) const {
if(this->verbose()) {
this->log() << s.c_str();
this->log().flush();
}
}
const TStr& _text; /// original string
const TIndexOffU _bucketSz; /// target maximum bucket size
const bool _sanityCheck; /// whether to perform sanity checks
const bool _passMemExc; /// true -> pass on memory exceptions
const bool _verbose; /// be talkative
EList<TIndexOffU> _itrBucket; /// current bucket
TIndexOffU _itrBucketPos;/// offset into current bucket
TIndexOffU _itrPushedBackSuffix; /// temporary slot for lookahead
ostream& _logger; /// write log messages here
};
/**
* Abstract parent class for a blockwise suffix array builder that
* always doles out blocks in lexicographical order.
*/
template<typename TStr>
class InorderBlockwiseSA : public BlockwiseSA<TStr> {
public:
InorderBlockwiseSA(const TStr& __text,
TIndexOffU __bucketSz,
bool __sanityCheck = false,
bool __passMemExc = false,
bool __verbose = false,
ostream& __logger = cout) :
BlockwiseSA<TStr>(__text, __bucketSz, __sanityCheck, __passMemExc, __verbose, __logger)
{ }
};
/**
* Build the SA a block at a time according to the scheme outlined in
* Karkkainen's "Fast BWT" paper.
*/
template<typename TStr>
class KarkkainenBlockwiseSA : public InorderBlockwiseSA<TStr> {
public:
typedef DifferenceCoverSample<TStr> TDC;
KarkkainenBlockwiseSA(const TStr& __text,
TIndexOffU __bucketSz,
int __nthreads,
uint32_t __dcV,
uint32_t __seed = 0,
bool __sanityCheck = false,
bool __passMemExc = false,
bool __verbose = false,
string base_fname = "",
ostream& __logger = cout) :
InorderBlockwiseSA<TStr>(__text, __bucketSz, __sanityCheck, __passMemExc, __verbose, __logger),
_sampleSuffs(EBWTB_CAT), _nthreads(__nthreads), _itrBucketIdx(0), _cur(0), _dcV(__dcV), _dc(EBWTB_CAT), _built(false), _base_fname(base_fname), _bigEndian(currentlyBigEndian())
{ _randomSrc.init(__seed); reset(); }
~KarkkainenBlockwiseSA()
{
if(_threads.size() > 0) {
for (size_t tid = 0; tid < _threads.size(); tid++) {
_threads[tid]->join();
delete _threads[tid];
}
}
}
/**
* Allocate an amount of memory that simulates the peak memory
* usage of the DifferenceCoverSample with the given text and v.
* Throws bad_alloc if it's not going to fit in memory. Returns
* the approximate number of bytes the Cover takes at all times.
*/
static size_t simulateAllocs(const TStr& text, TIndexOffU bucketSz) {
size_t len = text.length();
// _sampleSuffs and _itrBucket are in memory at the peak
size_t bsz = bucketSz;
size_t sssz = len / max<TIndexOffU>(bucketSz-1, 1);
AutoArray<TIndexOffU> tmp(bsz + sssz + (1024 * 1024 /*out of caution*/), EBWT_CAT);
return bsz;
}
static void nextBlock_Worker(void *vp) {
pair<KarkkainenBlockwiseSA*, int> param = *(pair<KarkkainenBlockwiseSA*, int>*)vp;
KarkkainenBlockwiseSA* sa = param.first;
int tid = param.second;
while(true) {
size_t cur = 0;
{
ThreadSafe ts(&sa->_mutex, sa->_nthreads > 1);
cur = sa->_cur;
if(cur > sa->_sampleSuffs.size()) break;
sa->_cur++;
}
sa->nextBlock((int)cur, tid);
// Write suffixes into a file
std::ostringstream number; number << cur;
const string fname = sa->_base_fname + "." + number.str() + ".sa";
ofstream sa_file(fname.c_str(), ios::binary);
if(!sa_file.good()) {
cerr << "Could not open file for writing a bucket: \"" << fname << "\"" << endl;
throw 1;
}
const EList<TIndexOffU>& bucket = sa->_itrBuckets[tid];
writeIndex<TIndexOffU>(sa_file, (TIndexOffU)bucket.size(), sa->_bigEndian);
for(size_t i = 0; i < bucket.size(); i++) {
writeIndex<TIndexOffU>(sa_file, bucket[i], sa->_bigEndian);
}
sa_file.close();
sa->_itrBuckets[tid].clear();
sa->_done[cur] = true;
}
}
/**
* Get the next suffix; compute the next bucket if necessary.
*/
virtual TIndexOffU nextSuffix() {
// Launch threads if not
if(this->_nthreads > 1) {
if(_threads.size() == 0) {
_done.resize(_sampleSuffs.size() + 1);
_done.fill(false);
_itrBuckets.resize(this->_nthreads);
for(int tid = 0; tid < this->_nthreads; tid++) {
_tparams.expand();
_tparams.back().first = this;
_tparams.back().second = tid;
_threads.push_back(new tthread::thread(nextBlock_Worker, (void*)&_tparams.back()));
}
assert_eq(_threads.size(), (size_t)this->_nthreads);
}
}
if(this->_itrPushedBackSuffix != OFF_MASK) {
TIndexOffU tmp = this->_itrPushedBackSuffix;
this->_itrPushedBackSuffix = OFF_MASK;
return tmp;
}
while(this->_itrBucketPos >= this->_itrBucket.size() ||
this->_itrBucket.size() == 0)
{
if(!hasMoreBlocks()) {
throw out_of_range("No more suffixes");
}
if(this->_nthreads == 1) {
nextBlock((int)_cur);
_cur++;
} else {
while(!_done[this->_itrBucketIdx]) {
#if defined(_TTHREAD_WIN32_)
Sleep(1);
#elif defined(_TTHREAD_POSIX_)
const static timespec ts = {0, 1000000}; // 1 millisecond
nanosleep(&ts, NULL);
#endif
}
// Read suffixes from a file
std::ostringstream number; number << this->_itrBucketIdx;
const string fname = _base_fname + "." + number.str() + ".sa";
ifstream sa_file(fname.c_str(), ios::binary);
if(!sa_file.good()) {
cerr << "Could not open file for reading a bucket: \"" << fname << "\"" << endl;
throw 1;
}
size_t numSAs = readIndex<TIndexOffU>(sa_file, _bigEndian);
this->_itrBucket.resizeExact(numSAs);
for(size_t i = 0; i < numSAs; i++) {
this->_itrBucket[i] = readIndex<TIndexOffU>(sa_file, _bigEndian);
}
sa_file.close();
std::remove(fname.c_str());
}
this->_itrBucketIdx++;
this->_itrBucketPos = 0;
}
return this->_itrBucket[this->_itrBucketPos++];
}
/// Defined in blockwise_sa.cpp
virtual void nextBlock(int cur_block, int tid = 0);
/// Defined in blockwise_sa.cpp
virtual void qsort(EList<TIndexOffU>& bucket);
/// Return true iff more blocks are available
virtual bool hasMoreBlocks() const {
return this->_itrBucketIdx <= _sampleSuffs.size();
}
/// Return the difference-cover period
uint32_t dcV() const { return _dcV; }
protected:
/**
* Initialize the state of the blockwise suffix sort. If the
* difference cover sample and the sample set have not yet been
* built, build them. Then reset the block cursor to point to
* the first block.
*/
virtual void reset() {
if(!_built) {
build();
}
assert(_built);
_cur = 0;
}
/// Return true iff we're about to dole out the first bucket
virtual bool isReset() {
return _cur == 0;
}
private:
/**
* Calculate the difference-cover sample and sample suffixes.
*/
void build() {
// Calculate difference-cover sample
assert(_dc.get() == NULL);
if(_dcV != 0) {
_dc.init(new TDC(this->text(), _dcV, this->verbose(), this->sanityCheck()));
_dc.get()->build(this->_nthreads);
}
// Calculate sample suffixes
if(this->bucketSz() <= this->text().length()) {
VMSG_NL("Building samples");
buildSamples();
} else {
VMSG_NL("Skipping building samples since text length " <<
this->text().length() << " is less than bucket size: " <<
this->bucketSz());
}
_built = true;
}
/**
* Calculate the lcp between two suffixes using the difference
* cover as a tie-breaker. If the tie-breaker is employed, then
* the calculated lcp may be an underestimate.
*
* Defined in blockwise_sa.cpp
*/
inline bool tieBreakingLcp(TIndexOffU aOff,
TIndexOffU bOff,
TIndexOffU& lcp,
bool& lcpIsSoft);
/**
* Compare two suffixes using the difference-cover sample.
*/
inline bool suffixCmp(TIndexOffU cmp,
TIndexOffU i,
int64_t& j,
int64_t& k,
bool& kSoft,
const EList<TIndexOffU>& z);
void buildSamples();
EList<TIndexOffU> _sampleSuffs; /// sample suffixes
int _nthreads; /// # of threads
TIndexOffU _itrBucketIdx;
TIndexOffU _cur; /// offset to 1st elt of next block
const uint32_t _dcV; /// difference-cover periodicity
PtrWrap<TDC> _dc; /// queryable difference-cover data
bool _built; /// whether samples/DC have been built
RandomSource _randomSrc; /// source of pseudo-randoms
MUTEX_T _mutex; /// synchronization of output message
string _base_fname; /// base file name for storing SA blocks
bool _bigEndian; /// bigEndian?
EList<tthread::thread*> _threads; /// thread list
EList<pair<KarkkainenBlockwiseSA*, int> > _tparams;
ELList<TIndexOffU> _itrBuckets; /// buckets
EList<bool> _done; /// is a block processed?
};
/**
* Qsort the set of suffixes whose offsets are in 'bucket'.
*/
template<typename TStr>
inline void KarkkainenBlockwiseSA<TStr>::qsort(EList<TIndexOffU>& bucket) {
const TStr& t = this->text();
TIndexOffU *s = bucket.ptr();
size_t slen = bucket.size();
TIndexOffU len = (TIndexOffU)t.length();
if(_dc.get() != NULL) {
// Use the difference cover as a tie-breaker if we have it
VMSG_NL(" (Using difference cover)");
// Extract the 'host' array because it's faster to work
// with than the EList<> container
const uint8_t *host = (const uint8_t *)t.buf();
assert(_dc.get() != NULL);
mkeyQSortSufDcU8(t, host, len, s, slen, *_dc.get(), 4,
this->verbose(), this->sanityCheck());
} else {
VMSG_NL(" (Not using difference cover)");
// We don't have a difference cover - just do a normal
// suffix sort
mkeyQSortSuf(t, s, slen, 4,
this->verbose(), this->sanityCheck());
}
}
/**
* Qsort the set of suffixes whose offsets are in 'bucket'. This
* specialization for packed strings does not attempt to extract and
* operate directly on the host string; the fact that the string is
* packed means that the array cannot be sorted directly.
*/
template<>
inline void KarkkainenBlockwiseSA<S2bDnaString>::qsort(
EList<TIndexOffU>& bucket)
{
const S2bDnaString& t = this->text();
TIndexOffU *s = bucket.ptr();
size_t slen = bucket.size();
size_t len = t.length();
if(_dc.get() != NULL) {
// Use the difference cover as a tie-breaker if we have it
VMSG_NL(" (Using difference cover)");
// Can't use the text's 'host' array because the backing
// store for the packed string is not one-char-per-elt.
mkeyQSortSufDcU8(t, t, len, s, slen, *_dc.get(), 4,
this->verbose(), this->sanityCheck());
} else {
VMSG_NL(" (Not using difference cover)");
// We don't have a difference cover - just do a normal
// suffix sort
mkeyQSortSuf(t, s, slen, 4,
this->verbose(), this->sanityCheck());
}
}
template<typename TStr>
struct BinarySortingParam {
const TStr* t;
const EList<TIndexOffU>* sampleSuffs;
EList<TIndexOffU> bucketSzs;
EList<TIndexOffU> bucketReps;
size_t begin;
size_t end;
};
template<typename TStr>
static void BinarySorting_worker(void *vp)
{
BinarySortingParam<TStr>* param = (BinarySortingParam<TStr>*)vp;
const TStr& t = *(param->t);
size_t len = t.length();
const EList<TIndexOffU>& sampleSuffs = *(param->sampleSuffs);
EList<TIndexOffU>& bucketSzs = param->bucketSzs;
EList<TIndexOffU>& bucketReps = param->bucketReps;
ASSERT_ONLY(size_t numBuckets = bucketSzs.size());
size_t begin = param->begin;
size_t end = param->end;
// Iterate through every suffix in the text, determine which
// bucket it falls into by doing a binary search across the
// sorted list of samples, and increment a counter associated
// with that bucket. Also, keep one representative for each
// bucket so that we can split it later. We loop in ten
// stretches so that we can print out a helpful progress
// message. (This step can take a long time.)
for(TIndexOffU i = (TIndexOffU)begin; i < end && i < len; i++) {
TIndexOffU r = binarySASearch(t, i, sampleSuffs);
if(r == std::numeric_limits<TIndexOffU>::max()) continue; // r was one of the samples
assert_lt(r, numBuckets);
bucketSzs[r]++;
assert_lt(bucketSzs[r], len);
if(bucketReps[r] == OFF_MASK || (i & 100) == 0) {
bucketReps[r] = i; // clobbers previous one, but that's OK
}
}
}
/**
* Select a set of bucket-delineating sample suffixes such that no
* bucket is greater than the requested upper limit. Some care is
* taken to make each bucket's size close to the limit without
* going over.
*/
template<typename TStr>
void KarkkainenBlockwiseSA<TStr>::buildSamples() {
const TStr& t = this->text();
TIndexOffU bsz = this->bucketSz()-1; // subtract 1 to leave room for sample
size_t len = this->text().length();
// Prepare _sampleSuffs array
_sampleSuffs.clear();
TIndexOffU numSamples = (TIndexOffU)((len/bsz)+1)<<1; // ~len/bsz x 2
assert_gt(numSamples, 0);
VMSG_NL("Reserving space for " << numSamples << " sample suffixes");
if(this->_passMemExc) {
_sampleSuffs.resizeExact(numSamples);
// Randomly generate samples. Allow duplicates for now.
VMSG_NL("Generating random suffixes");
for(size_t i = 0; i < numSamples; i++) {
#ifdef BOWTIE_64BIT_INDEX
_sampleSuffs[i] = (TIndexOffU)(_randomSrc.nextU64() % len);
#else
_sampleSuffs[i] = (TIndexOffU)(_randomSrc.nextU32() % len);
#endif
}
} else {
try {
_sampleSuffs.resizeExact(numSamples);
// Randomly generate samples. Allow duplicates for now.
VMSG_NL("Generating random suffixes");
for(size_t i = 0; i < numSamples; i++) {
#ifdef BOWTIE_64BIT_INDEX
_sampleSuffs[i] = (TIndexOffU)(_randomSrc.nextU64() % len);
#else
_sampleSuffs[i] = (TIndexOffU)(_randomSrc.nextU32() % len);
#endif
}
} catch(bad_alloc &e) {
if(this->_passMemExc) {
throw e; // rethrow immediately
} else {
cerr << "Could not allocate sample suffix container of " << (numSamples * OFF_SIZE) << " bytes." << endl
<< "Please try using a smaller number of blocks by specifying a larger --bmax or" << endl
<< "a smaller --bmaxdivn" << endl;
throw 1;
}
}
}
// Remove duplicates; very important to do this before the call to
// mkeyQSortSuf so that it doesn't try to calculate lexicographical
// relationships between very long, identical strings, which takes
// an extremely long time in general, and causes the stack to grow
// linearly with the size of the input
{
Timer timer(cout, "QSorting sample offsets, eliminating duplicates time: ", this->verbose());
VMSG_NL("QSorting " << _sampleSuffs.size() << " sample offsets, eliminating duplicates");
_sampleSuffs.sort();
size_t sslen = _sampleSuffs.size();
for(size_t i = 0; i < sslen-1; i++) {
if(_sampleSuffs[i] == _sampleSuffs[i+1]) {
_sampleSuffs.erase(i--);
sslen--;
}
}
}
// Multikey quicksort the samples
{
Timer timer(cout, " Multikey QSorting samples time: ", this->verbose());
VMSG_NL("Multikey QSorting " << _sampleSuffs.size() << " samples");
this->qsort(_sampleSuffs);
}
// Calculate bucket sizes
VMSG_NL("Calculating bucket sizes");
int limit = 5;
// Iterate until all buckets are less than
while(--limit >= 0) {
TIndexOffU numBuckets = (TIndexOffU)_sampleSuffs.size()+1;
AutoArray<tthread::thread*> threads(this->_nthreads);
EList<BinarySortingParam<TStr> > tparams;
for(int tid = 0; tid < this->_nthreads; tid++) {
// Calculate bucket sizes by doing a binary search for each
// suffix and noting where it lands
tparams.expand();
try {
// Allocate and initialize containers for holding bucket
// sizes and representatives.
tparams.back().bucketSzs.resizeExact(numBuckets);
tparams.back().bucketReps.resizeExact(numBuckets);
tparams.back().bucketSzs.fillZero();
tparams.back().bucketReps.fill(OFF_MASK);
} catch(bad_alloc &e) {
if(this->_passMemExc) {
throw e; // rethrow immediately
} else {
cerr << "Could not allocate sizes, representatives (" << ((numBuckets*8)>>10) << " KB) for blocks." << endl
<< "Please try using a smaller number of blocks by specifying a larger --bmax or a" << endl
<< "smaller --bmaxdivn." << endl;
throw 1;
}
}
tparams.back().t = &t;
tparams.back().sampleSuffs = &_sampleSuffs;
tparams.back().begin = (tid == 0 ? 0 : len / this->_nthreads * tid);
tparams.back().end = (tid + 1 == this->_nthreads ? len : len / this->_nthreads * (tid + 1));
if(this->_nthreads == 1) {
BinarySorting_worker<TStr>((void*)&tparams.back());
} else {
threads[tid] = new tthread::thread(BinarySorting_worker<TStr>, (void*)&tparams.back());
}
}
if(this->_nthreads > 1) {
for (int tid = 0; tid < this->_nthreads; tid++) {
threads[tid]->join();
}
}
EList<TIndexOffU>& bucketSzs = tparams[0].bucketSzs;
EList<TIndexOffU>& bucketReps = tparams[0].bucketReps;
for(int tid = 1; tid < this->_nthreads; tid++) {
for(size_t j = 0; j < numBuckets; j++) {
bucketSzs[j] += tparams[tid].bucketSzs[j];
if(bucketReps[j] == OFF_MASK) {
bucketReps[j] = tparams[tid].bucketReps[j];
}
}
}
// Check for large buckets and mergeable pairs of small buckets
// and split/merge as necessary
TIndexOff added = 0;
TIndexOff merged = 0;
assert_eq(bucketSzs.size(), numBuckets);
assert_eq(bucketReps.size(), numBuckets);
{
Timer timer(cout, " Splitting and merging time: ", this->verbose());
VMSG_NL("Splitting and merging");
for(TIndexOffU i = 0; i < numBuckets; i++) {
TIndexOffU mergedSz = bsz + 1;
assert(bucketSzs[(size_t)i] == 0 || bucketReps[(size_t)i] != OFF_MASK);
if(i < numBuckets-1) {
mergedSz = bucketSzs[(size_t)i] + bucketSzs[(size_t)i+1] + 1;
}
// Merge?
if(mergedSz <= bsz) {
bucketSzs[(size_t)i+1] += (bucketSzs[(size_t)i]+1);
// The following may look strange, but it's necessary
// to ensure that the merged bucket has a representative
bucketReps[(size_t)i+1] = _sampleSuffs[(size_t)i+added];
_sampleSuffs.erase((size_t)i+added);
bucketSzs.erase((size_t)i);
bucketReps.erase((size_t)i);
i--; // might go to -1 but ++ will overflow back to 0
numBuckets--;
merged++;
assert_eq(numBuckets, _sampleSuffs.size()+1-added);
assert_eq(numBuckets, bucketSzs.size());
}
// Split?
else if(bucketSzs[(size_t)i] > bsz) {
// Add an additional sample from the bucketReps[]
// set accumulated in the binarySASearch loop; this
// effectively splits the bucket
_sampleSuffs.insert(bucketReps[(size_t)i], (TIndexOffU)(i + (added++)));
}
}
}
if(added == 0) {
//if(this->verbose()) {
// cout << "Final bucket sizes:" << endl;
// cout << " (begin): " << bucketSzs[0] << " (" << (int)(bsz - bucketSzs[0]) << ")" << endl;
// for(uint32_t i = 1; i < numBuckets; i++) {
// cout << " " << bucketSzs[i] << " (" << (int)(bsz - bucketSzs[i]) << ")" << endl;
// }
//}
break;
}
// Otherwise, continue until no more buckets need to be
// split
VMSG_NL("Split " << added << ", merged " << merged << "; iterating...");
}
// Do *not* force a do-over
// if(limit == 0) {
// VMSG_NL("Iterated too many times; trying again...");
// buildSamples();
// }
VMSG_NL("Avg bucket size: " << ((double)(len-_sampleSuffs.size()) / (_sampleSuffs.size()+1)) << " (target: " << bsz << ")");
}
/**
* Do a simple LCP calculation on two strings.
*/
template<typename T> inline
static TIndexOffU suffixLcp(const T& t, TIndexOffU aOff, TIndexOffU bOff) {
TIndexOffU c = 0;
size_t len = t.length();
assert_leq(aOff, len);
assert_leq(bOff, len);
while(aOff + c < len && bOff + c < len && t[aOff + c] == t[bOff + c]) c++;
return c;
}
/**
* Calculate the lcp between two suffixes using the difference
* cover as a tie-breaker. If the tie-breaker is employed, then
* the calculated lcp may be an underestimate. If the tie-breaker is
* employed, lcpIsSoft will be set to true (otherwise, false).
*/
template<typename TStr> inline
bool KarkkainenBlockwiseSA<TStr>::tieBreakingLcp(TIndexOffU aOff,
TIndexOffU bOff,
TIndexOffU& lcp,
bool& lcpIsSoft)
{
const TStr& t = this->text();
TIndexOffU c = 0;
TIndexOffU tlen = (TIndexOffU)t.length();
assert_leq(aOff, tlen);
assert_leq(bOff, tlen);
assert(_dc.get() != NULL);
uint32_t dcDist = _dc.get()->tieBreakOff(aOff, bOff);
lcpIsSoft = false; // hard until proven soft
while(c < dcDist && // we haven't hit the tie breaker
c < tlen-aOff && // we haven't fallen off of LHS suffix
c < tlen-bOff && // we haven't fallen off of RHS suffix
t[aOff+c] == t[bOff+c]) // we haven't hit a mismatch
c++;
lcp = c;
if(c == tlen-aOff) {
// Fell off LHS (a), a is greater
return false;
} else if(c == tlen-bOff) {
// Fell off RHS (b), b is greater
return true;
} else if(c == dcDist) {
// Hit a tie-breaker element
lcpIsSoft = true;
assert_neq(dcDist, 0xffffffff);
return _dc.get()->breakTie(aOff+c, bOff+c) < 0;
} else {
assert_neq(t[aOff+c], t[bOff+c]);
return t[aOff+c] < t[bOff+c];
}
}
/**
* Lookup a suffix LCP in the given z array; if the element is not
* filled in then calculate it from scratch.
*/
template<typename T>
static TIndexOffU lookupSuffixZ(
const T& t,
TIndexOffU zOff,
TIndexOffU off,
const EList<TIndexOffU>& z)
{
if(zOff < z.size()) {
TIndexOffU ret = z[zOff];
assert_eq(ret, suffixLcp(t, off + zOff, off));
return ret;
}
assert_leq(off + zOff, t.length());
return suffixLcp(t, off + zOff, off);
}
/**
* true -> i < cmp
* false -> i > cmp
*/
template<typename TStr> inline
bool KarkkainenBlockwiseSA<TStr>::suffixCmp(
TIndexOffU cmp,
TIndexOffU i,
int64_t& j,
int64_t& k,
bool& kSoft,
const EList<TIndexOffU>& z)
{
const TStr& t = this->text();
TIndexOffU len = (TIndexOffU)t.length();
// i is not covered by any previous match
TIndexOffU l;
if((int64_t)i > k) {
k = i; // so that i + lHi == kHi
l = 0; // erase any previous l
kSoft = false;
// To be extended
}
// i is covered by a previous match
else /* i <= k */ {
assert_gt((int64_t)i, j);
TIndexOffU zIdx = (TIndexOffU)(i-j);
assert_leq(zIdx, len-cmp);
if(zIdx < _dcV || _dc.get() == NULL) {
// Go as far as the Z-box says
l = lookupSuffixZ(t, zIdx, cmp, z);
if(i + l > len) {
l = len-i;
}
assert_leq(i + l, len);
// Possibly to be extended
} else {
// But we're past the point of no-more-Z-boxes
bool ret = tieBreakingLcp(i, cmp, l, kSoft);
// Sanity-check tie-breaker
if(this->sanityCheck()) {
if(ret) assert(sstr_suf_lt(t, i, t, cmp, false));
else assert(sstr_suf_gt(t, i, t, cmp, false));
}
j = i;
k = i + l;
if(this->sanityCheck()) {
if(kSoft) { assert_leq(l, suffixLcp(t, i, cmp)); }
else { assert_eq (l, suffixLcp(t, i, cmp)); }
}
return ret;
}
}
// Z box extends exactly as far as previous match (or there
// is neither a Z box nor a previous match)
if((int64_t)(i + l) == k) {
// Extend
while(l < len-cmp && k < (int64_t)len && t[(size_t)(cmp+l)] == t[(size_t)k]) {
k++; l++;
}
j = i; // update furthest-extending LHS
kSoft = false;
assert_eq(l, suffixLcp(t, i, cmp));
}
// Z box extends further than previous match
else if((int64_t)(i + l) > k) {
l = (TIndexOffU)(k - i); // point to just after previous match
j = i; // update furthest-extending LHS
if(kSoft) {
while(l < len-cmp && k < (int64_t)len && t[(size_t)(cmp+l)] == t[(size_t)k]) {
k++; l++;
}
kSoft = false;
assert_eq(l, suffixLcp(t, i, cmp));
} else assert_eq(l, suffixLcp(t, i, cmp));
}
// Check that calculated lcp matches actual lcp
if(this->sanityCheck()) {
if(!kSoft) {
// l should exactly match lcp
assert_eq(l, suffixLcp(t, i, cmp));
} else {
// l is an underestimate of LCP
assert_leq(l, suffixLcp(t, i, cmp));
}
}
assert_leq(l+i, len);
assert_leq(l, len-cmp);
// i and cmp should not be the same suffix
assert(l != len-cmp || i+l != len);
// Now we're ready to do a comparison on the next char
if(l+i != len && (
l == len-cmp || // departure from paper algorithm:
// falling off pattern implies
// pattern is *greater* in our case
t[i + l] < t[cmp + l]))
{
// Case 2: Text suffix is less than upper sample suffix
#ifndef NDEBUG
if(this->sanityCheck()) {
assert(sstr_suf_lt(t, i, t, cmp, false));
}
#endif
return true; // suffix at i is less than suffix at cmp
}
else {
// Case 3: Text suffix is greater than upper sample suffix
#ifndef NDEBUG
if(this->sanityCheck()) {
assert(sstr_suf_gt(t, i, t, cmp, false));
}
#endif
return false; // suffix at i is less than suffix at cmp
}
}
/**
* Retrieve the next block. This is the most performance-critical part
* of the blockwise suffix sorting process.
*/
template<typename TStr>
void KarkkainenBlockwiseSA<TStr>::nextBlock(int cur_block, int tid) {
#ifndef NDEBUG
if(this->_nthreads > 1) {
assert_lt(tid, this->_itrBuckets.size());
}
#endif
EList<TIndexOffU>& bucket = (this->_nthreads > 1 ? this->_itrBuckets[tid] : this->_itrBucket);
{
ThreadSafe ts(&_mutex, this->_nthreads > 1);
VMSG_NL("Getting block " << (cur_block+1) << " of " << _sampleSuffs.size()+1);
}
assert(_built);
assert_gt(_dcV, 3);
assert_leq(cur_block, _sampleSuffs.size());
const TStr& t = this->text();
TIndexOffU len = (TIndexOffU)t.length();
// Set up the bucket
bucket.clear();
TIndexOffU lo = OFF_MASK, hi = OFF_MASK;
if(_sampleSuffs.size() == 0) {
// Special case: if _sampleSuffs is 0, then multikey-quicksort
// everything
{
ThreadSafe ts(&_mutex, this->_nthreads > 1);
VMSG_NL(" No samples; assembling all-inclusive block");
}
assert_eq(0, cur_block);
try {
if(bucket.capacity() < this->bucketSz()) {
bucket.reserveExact(len+1);
}
bucket.resize(len);
for(TIndexOffU i = 0; i < len; i++) {
bucket[i] = i;
}
} catch(bad_alloc &e) {
if(this->_passMemExc) {
throw e; // rethrow immediately
} else {
cerr << "Could not allocate a master suffix-array block of " << ((len+1) * 4) << " bytes" << endl
<< "Please try using a larger number of blocks by specifying a smaller --bmax or" << endl
<< "a larger --bmaxdivn" << endl;
throw 1;
}
}
} else {
try {
{
ThreadSafe ts(&_mutex, this->_nthreads > 1);
VMSG_NL(" Reserving size (" << this->bucketSz() << ") for bucket " << (cur_block+1));
}
// BTL: Add a +100 fudge factor; there seem to be instances
// where a bucket ends up having one more elt than bucketSz()
if(bucket.size() < this->bucketSz()+100) {
bucket.reserveExact(this->bucketSz()+100);
}
} catch(bad_alloc &e) {
if(this->_passMemExc) {
throw e; // rethrow immediately
} else {
cerr << "Could not allocate a suffix-array block of " << ((this->bucketSz()+1) * 4) << " bytes" << endl;
cerr << "Please try using a larger number of blocks by specifying a smaller --bmax or" << endl
<< "a larger --bmaxdivn" << endl;
throw 1;
}
}
// Select upper and lower bounds from _sampleSuffs[] and
// calculate the Z array up to the difference-cover periodicity
// for both. Be careful about first/last buckets.
EList<TIndexOffU> zLo(EBWTB_CAT), zHi(EBWTB_CAT);
assert_geq(cur_block, 0);
assert_leq((size_t)cur_block, _sampleSuffs.size());
bool first = (cur_block == 0);
bool last = ((size_t)cur_block == _sampleSuffs.size());
try {
// Timer timer(cout, " Calculating Z arrays time: ", this->verbose());
{
ThreadSafe ts(&_mutex, this->_nthreads > 1);
VMSG_NL(" Calculating Z arrays for bucket " << (cur_block+1));
}
if(!last) {