Skip to content

[Jeehay28] WEEK 14 #1094

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Mar 16, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 37 additions & 0 deletions binary-tree-level-order-traversal/Jeehay28.js
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Queue 를 사용한 BFS 방식으로 문제를 접근해서 풀어주셨네요!
DFS를 사용한 문제 풀이 방법도 도전해보시면 재미있을것 같습니다 ㅎㅎ

Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
// ✅ Time Complexity: O(n), where n is the number of nodes in the tree
// ✅ Space Complexity: O(n)

/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[][]}
*/
var levelOrder = function (root) {
if (!root) return [];

let output = [];
let queue = [root];

while (queue.length > 0) {
let values = [];

const lengthQueue = queue.length;

for (let i = 0; i < lengthQueue; i++) {
const node = queue.shift();
values.push(node.val);
if (node.left) queue.push(node.left);
if (node.right) queue.push(node.right);
}
output.push(values);
}
return output;
};

51 changes: 51 additions & 0 deletions counting-bits/Jeehay28.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
// ✅ Time Complexity: O(n)
// ✅ Space Complexity: O(n)

/**
* @param {number} n
* @return {number[]}
*/
var countBits = function (n) {
// dp[i] = 1 + dp[i - MSB]
// MSB(Most Significant Bit)

let dp = new Array(n + 1).fill(0);
let msb = 1;

for (let i = 1; i <= n; i++) {
if (msb * 2 === i) {
msb = i;
}

dp[i] = 1 + dp[i - msb];
}

return dp;
};

// ✅ Time Complexity: O(n * logn)
// ✅ Space Complexity: O(n)

/**
* @param {number} n
* @return {number[]}
*/
// var countBits = function (n) {
// let result = [0];
// const count = (num) => {
// let cnt = 0;
// while (num !== 0) {
// cnt += num % 2;
// num = Math.floor(num / 2);
// }
// return cnt;
// };

// for (let i = 1; i <= n; i++) {
// const temp = count(i);
// result.push(temp);
// }

// return result;
// };

35 changes: 35 additions & 0 deletions house-robber-ii/Jeehay28.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
// ✅ Time Complexity: O(n)
// ✅ Space Complexity: O(1)

/**
* @param {number[]} nums
* @return {number}
*/
var rob = function (nums) {
// Edge case: If there's only one house, return its value
if (nums.length === 1) return nums[0];

// helper function
const robHouses = (start, end) => {
// prev1: stores the maximum money robbed up to the previous house.
// prev2: stores the maximum money robbed up to the house before the previous house.
let prev1 = 0,
prev2 = 0;

for (let i = start; i <= end; i++) {
let temp = Math.max(prev1, prev2 + nums[i]);

prev2 = prev1;

prev1 = temp;
}

return prev1;
};

// Excluding the last house: robHouses(0, nums.length - 2)
// Excluding the first house: robHouses(1, nums.length - 1)

return Math.max(robHouses(0, nums.length - 2), robHouses(1, nums.length - 1));
};

104 changes: 104 additions & 0 deletions word-search-ii/Jeehay28.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
// const words = ["oath", "pea", "eat", "rain"];
// const trie = buildTrie(words);

// Trie in JavaScript Object Notation:
// {
// "o": { "a": { "t": { "h": { "word": "oath" } } } },
// "p": { "e": { "a": { "word": "pea" } } },
// "e": { "a": { "t": { "word": "eat" } } },
// "r": { "a": { "i": { "n": { "word": "rain" } } } }
// }

class TrieNode {
constructor() {
this.children = {}; // Stores child nodes (next characters)
this.word = null; // Stores the word when a full word is formed
}
}

const buildTrie = (words) => {
let root = new TrieNode(); // Create the root node

for (const word of words) {
// Iterate over each word
let node = root;

for (const char of word) {
// Iterate over each character in the word
if (!node.children[char]) {
node.children[char] = new TrieNode(); // Create node if missing
}
node = node.children[char]; // Move to the next node
}

node.word = word; // Store word at the end node
}

return root;
};

// ✅ Time Complexity: O(N * L + M * 4^L)
// ✅ Space Complexity: O(N * L + M)

// N represents the number of words in the words array.
// L represents the maximum length of a word in the words array.
// M represents the total number of cells on the board, which is the product of the number of rows and columns: M = rows × cols

/**
* @param {character[][]} board
* @param {string[]} words
* @return {string[]}
*/
var findWords = function (board, words) {
const root = buildTrie(words);
const result = new Set(); // To store found words
const rows = board.length,
cols = board[0].length;

const dfs = (node, r, c) => {
if (
r < 0 ||
c < 0 ||
r >= rows ||
c >= cols ||
!node.children[board[r][c]]
) {
return;
}

const char = board[r][c];
node = node.children[char]; // Move to the next Trie node

if (node.word) {
// If a word is found at this node
result.add(node.word); // Add it to the result set
node.word = null; // Avoid duplicate results
}

board[r][c] = "#"; // Temporarily mark visited cell

// Explore all 4 directions
dfs(node, r + 1, c);
dfs(node, r - 1, c);
dfs(node, r, c + 1);
dfs(node, r, c - 1);

board[r][c] = char; // Restore the original character

// 🔥 Remove node if it has no children (prune Trie)
if (Object.keys(node.children).length === 0) {
delete node.children[char];
}
};

for (let r = 0; r < rows; r++) {
for (let c = 0; c < cols; c++) {
if (root.children[board[r][c]]) {
dfs(root, r, c);
}
}
}

return Array.from(result);
};