-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
d474574
commit 312bc06
Showing
1 changed file
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
import tensorflow as tf | ||
import numpy as np | ||
import pre_trained_facenet | ||
import cv2 | ||
from mtcnn.mtcnn import MTCNN | ||
import xlrd | ||
|
||
print("Choose") | ||
print("1.For input from Webcam") | ||
print("2.For input from the Folder-Input") | ||
val = input("Enter your value from Keyboard: ") | ||
print(val) | ||
if (val=='1'): | ||
camera = cv2.VideoCapture(0) | ||
return_value, camshot = camera.read() | ||
cv2.imwrite('captured/cam.jpg', camshot) | ||
img2 = cv2.imread("captured/cam.jpg") | ||
del(camera) | ||
elif (val=='2'): | ||
img2 = cv2.imread("Input/cam.jpg") | ||
else: | ||
print("Wrong Choice") | ||
exit() | ||
|
||
detector = MTCNN() | ||
|
||
# some constants kept as default from facenet | ||
minsize = 20 | ||
threshold = [0.6, 0.7, 0.7] | ||
factor = 0.709 | ||
margin = 44 | ||
input_image_size = 160 | ||
loc = ("data.xls") | ||
wb = xlrd.open_workbook(loc) | ||
sheet = wb.sheet_by_index(0) | ||
sess = tf.Session() | ||
|
||
# read 20170512-110547 model file downloaded from https://drive.google.com/file/d/0B5MzpY9kBtDVZ2RpVDYwWmxoSUk | ||
pre_trained_facenet.load_model("20170512-110547/20170512-110547.pb") | ||
|
||
# Get input and output tensors | ||
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") | ||
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") | ||
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") | ||
embedding_size = embeddings.get_shape()[1] | ||
|
||
def getFace(img): | ||
faces=[] | ||
result = detector.detect_faces(img) | ||
# Result is an array with all the bounding boxes detected. We know that for 'ivan.jpg' there is only one. | ||
|
||
bounding_box = result[0]['box'] | ||
keypoints = result[0]['keypoints'] | ||
cv2.rectangle(img, | ||
(bounding_box[0], bounding_box[1]), | ||
(bounding_box[0]+bounding_box[2], bounding_box[1] + bounding_box[3]), | ||
(0,155,255), | ||
2) | ||
cv2.circle(img,(keypoints['left_eye']), 2, (0,155,255), 2) | ||
cv2.circle(img,(keypoints['right_eye']), 2, (0,155,255), 2) | ||
cv2.circle(img,(keypoints['nose']), 2, (0,155,255), 2) | ||
cv2.circle(img,(keypoints['mouth_left']), 2, (0,155,255), 2) | ||
cv2.circle(img,(keypoints['mouth_right']), 2, (0,155,255), 2) | ||
cv2.imwrite("check/dd_drawn.jpg", img) | ||
cropped=img[bounding_box[1]:bounding_box[1] + bounding_box[3], bounding_box[0]:bounding_box[0]+bounding_box[2]] | ||
cv2.imwrite("check/dd_cropped.jpg", cropped) | ||
rearranged= cv2.resize(cropped, (input_image_size,input_image_size),interpolation=cv2.INTER_CUBIC) | ||
cv2.imwrite("check/dd_resized.jpg",rearranged) | ||
prewhitened = pre_trained_facenet.prewhiten(rearranged) | ||
faces.append({'face':rearranged,'embedding':getEmbedding(prewhitened)}) | ||
return faces | ||
def getEmbedding(resized): | ||
reshaped = resized.reshape(-1,input_image_size,input_image_size,3) | ||
feed_dict = {images_placeholder: reshaped, phase_train_placeholder: False} | ||
embedding = sess.run(embeddings, feed_dict=feed_dict) | ||
return embedding | ||
|
||
def compare2face(img1,img2): | ||
face1 = getFace(img1) | ||
face2 = getFace(img2) | ||
if face1 and face2: | ||
# calculate Euclidean distance | ||
dist = np.sqrt(np.sum(np.square(np.subtract(face1[0]['embedding'], face2[0]['embedding'])))) | ||
return dist | ||
return -1 | ||
print("Total number of people in database = "+str(sheet.nrows-1)) | ||
|
||
for j in range (1,sheet.nrows): | ||
img1 = cv2.imread("database/Person"+str(j)+".jpg") | ||
distance=compare2face(img1,img2) | ||
threshold = 0.9 # set yourself to meet your requirement | ||
print("distance = "+str(distance)) | ||
if(distance <= threshold): | ||
print("person found is from class "+str(j)) | ||
print("The person found is "+str(sheet.cell_value(j,1))) | ||
break | ||
|
||
|