-
Notifications
You must be signed in to change notification settings - Fork 476
chore(ci): adding datadog-lambda-python CI to Gitlab #15475
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
|
Bootstrap import analysisComparison of import times between this PR and base. SummaryThe average import time from this PR is: 244 ± 1 ms. The average import time from base is: 246 ± 1 ms. The import time difference between this PR and base is: -2.6 ± 0.06 ms. Import time breakdownThe following import paths have shrunk:
|
Performance SLOsComparing candidate rithika.narayan/APMSVLS-284-lambda-ci (469dac2) with baseline main (7e53632) 📈 Performance Regressions (3 suites)📈 iastaspects - 118/118✅ add_aspectTime: ✅ 18.193µs (SLO: <20.000µs -9.0%) vs baseline: 📈 +21.9% Memory: ✅ 42.998MB (SLO: <43.250MB 🟡 -0.6%) vs baseline: +5.1% ✅ add_inplace_aspectTime: ✅ 14.889µs (SLO: <20.000µs 📉 -25.6%) vs baseline: -0.6% Memory: ✅ 42.802MB (SLO: <43.250MB 🟡 -1.0%) vs baseline: +4.8% ✅ add_inplace_noaspectTime: ✅ 0.341µs (SLO: <10.000µs 📉 -96.6%) vs baseline: +2.0% Memory: ✅ 42.762MB (SLO: <43.000MB 🟡 -0.6%) vs baseline: +4.8% ✅ add_noaspectTime: ✅ 0.545µs (SLO: <10.000µs 📉 -94.5%) vs baseline: -0.9% Memory: ✅ 42.782MB (SLO: <43.000MB 🟡 -0.5%) vs baseline: +4.7% ✅ bytearray_aspectTime: ✅ 17.874µs (SLO: <30.000µs 📉 -40.4%) vs baseline: -0.6% Memory: ✅ 42.841MB (SLO: <43.500MB 🟡 -1.5%) vs baseline: +4.3% ✅ bytearray_extend_aspectTime: ✅ 23.751µs (SLO: <30.000µs 📉 -20.8%) vs baseline: +0.2% Memory: ✅ 42.861MB (SLO: <43.500MB 🟡 -1.5%) vs baseline: +4.9% ✅ bytearray_extend_noaspectTime: ✅ 2.631µs (SLO: <10.000µs 📉 -73.7%) vs baseline: +0.1% Memory: ✅ 42.625MB (SLO: <43.500MB -2.0%) vs baseline: +4.7% ✅ bytearray_noaspectTime: ✅ 1.466µs (SLO: <10.000µs 📉 -85.3%) vs baseline: +1.1% Memory: ✅ 42.684MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +4.9% ✅ bytes_aspectTime: ✅ 16.666µs (SLO: <20.000µs 📉 -16.7%) vs baseline: -0.2% Memory: ✅ 42.821MB (SLO: <43.000MB 🟡 -0.4%) vs baseline: +4.5% ✅ bytes_noaspectTime: ✅ 1.386µs (SLO: <10.000µs 📉 -86.1%) vs baseline: -1.7% Memory: ✅ 42.684MB (SLO: <43.000MB 🟡 -0.7%) vs baseline: +4.8% ✅ bytesio_aspectTime: ✅ 54.971µs (SLO: <70.000µs 📉 -21.5%) vs baseline: ~same Memory: ✅ 42.880MB (SLO: <43.500MB 🟡 -1.4%) vs baseline: +4.7% ✅ bytesio_noaspectTime: ✅ 3.208µs (SLO: <10.000µs 📉 -67.9%) vs baseline: -0.7% Memory: ✅ 42.841MB (SLO: <43.500MB 🟡 -1.5%) vs baseline: +5.3% ✅ capitalize_aspectTime: ✅ 14.630µs (SLO: <20.000µs 📉 -26.8%) vs baseline: +0.2% Memory: ✅ 42.703MB (SLO: <43.000MB 🟡 -0.7%) vs baseline: +4.3% ✅ capitalize_noaspectTime: ✅ 2.565µs (SLO: <10.000µs 📉 -74.3%) vs baseline: +0.3% Memory: ✅ 42.723MB (SLO: <43.000MB 🟡 -0.6%) vs baseline: +4.5% ✅ casefold_aspectTime: ✅ 14.612µs (SLO: <20.000µs 📉 -26.9%) vs baseline: -0.3% Memory: ✅ 42.900MB (SLO: <43.000MB 🟡 -0.2%) vs baseline: +4.5% ✅ casefold_noaspectTime: ✅ 3.085µs (SLO: <10.000µs 📉 -69.2%) vs baseline: -0.8% Memory: ✅ 42.684MB (SLO: <43.000MB 🟡 -0.7%) vs baseline: +5.1% ✅ decode_aspectTime: ✅ 15.529µs (SLO: <30.000µs 📉 -48.2%) vs baseline: +0.2% Memory: ✅ 42.979MB (SLO: <43.500MB 🟡 -1.2%) vs baseline: +4.6% ✅ decode_noaspectTime: ✅ 1.589µs (SLO: <10.000µs 📉 -84.1%) vs baseline: -0.8% Memory: ✅ 42.802MB (SLO: <43.500MB 🟡 -1.6%) vs baseline: +5.2% ✅ encode_aspectTime: ✅ 18.181µs (SLO: <30.000µs 📉 -39.4%) vs baseline: 📈 +22.6% Memory: ✅ 42.861MB (SLO: <43.500MB 🟡 -1.5%) vs baseline: +4.3% ✅ encode_noaspectTime: ✅ 1.472µs (SLO: <10.000µs 📉 -85.3%) vs baseline: ~same Memory: ✅ 42.743MB (SLO: <43.000MB 🟡 -0.6%) vs baseline: +5.1% ✅ format_aspectTime: ✅ 171.564µs (SLO: <200.000µs 📉 -14.2%) vs baseline: +0.3% Memory: ✅ 42.880MB (SLO: <43.250MB 🟡 -0.9%) vs baseline: +4.3% ✅ format_map_aspectTime: ✅ 191.267µs (SLO: <200.000µs -4.4%) vs baseline: ~same Memory: ✅ 42.802MB (SLO: <43.500MB 🟡 -1.6%) vs baseline: +4.3% ✅ format_map_noaspectTime: ✅ 3.738µs (SLO: <10.000µs 📉 -62.6%) vs baseline: ~same Memory: ✅ 42.723MB (SLO: <43.250MB 🟡 -1.2%) vs baseline: +5.1% ✅ format_noaspectTime: ✅ 3.153µs (SLO: <10.000µs 📉 -68.5%) vs baseline: -1.3% Memory: ✅ 42.821MB (SLO: <43.250MB 🟡 -1.0%) vs baseline: +5.0% ✅ index_aspectTime: ✅ 15.226µs (SLO: <20.000µs 📉 -23.9%) vs baseline: -0.6% Memory: ✅ 42.762MB (SLO: <43.250MB 🟡 -1.1%) vs baseline: +4.8% ✅ index_noaspectTime: ✅ 0.462µs (SLO: <10.000µs 📉 -95.4%) vs baseline: ~same Memory: ✅ 42.546MB (SLO: <43.000MB 🟡 -1.1%) vs baseline: +4.2% ✅ join_aspectTime: ✅ 16.956µs (SLO: <20.000µs 📉 -15.2%) vs baseline: +0.2% Memory: ✅ 42.762MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +4.8% ✅ join_noaspectTime: ✅ 1.494µs (SLO: <10.000µs 📉 -85.1%) vs baseline: -0.3% Memory: ✅ 42.664MB (SLO: <43.250MB 🟡 -1.4%) vs baseline: +4.5% ✅ ljust_aspectTime: ✅ 20.791µs (SLO: <30.000µs 📉 -30.7%) vs baseline: -0.6% Memory: ✅ 42.821MB (SLO: <43.250MB 🟡 -1.0%) vs baseline: +4.4% ✅ ljust_noaspectTime: ✅ 2.668µs (SLO: <10.000µs 📉 -73.3%) vs baseline: ~same Memory: ✅ 42.566MB (SLO: <43.250MB 🟡 -1.6%) vs baseline: +4.5% ✅ lower_aspectTime: ✅ 17.821µs (SLO: <30.000µs 📉 -40.6%) vs baseline: +0.6% Memory: ✅ 42.998MB (SLO: <43.500MB 🟡 -1.2%) vs baseline: +5.1% ✅ lower_noaspectTime: ✅ 2.375µs (SLO: <10.000µs 📉 -76.2%) vs baseline: -0.6% Memory: ✅ 42.664MB (SLO: <43.250MB 🟡 -1.4%) vs baseline: +5.2% ✅ lstrip_aspectTime: ✅ 17.573µs (SLO: <20.000µs 📉 -12.1%) vs baseline: -0.1% Memory: ✅ 42.939MB (SLO: <43.250MB 🟡 -0.7%) vs baseline: +4.5% ✅ lstrip_noaspectTime: ✅ 1.835µs (SLO: <10.000µs 📉 -81.6%) vs baseline: +0.8% Memory: ✅ 42.585MB (SLO: <43.000MB 🟡 -1.0%) vs baseline: +4.6% ✅ modulo_aspectTime: ✅ 166.643µs (SLO: <200.000µs 📉 -16.7%) vs baseline: +0.2% Memory: ✅ 42.841MB (SLO: <43.500MB 🟡 -1.5%) vs baseline: +4.1% ✅ modulo_aspect_for_bytearray_bytearrayTime: ✅ 180.203µs (SLO: <200.000µs -9.9%) vs baseline: +3.4% Memory: ✅ 42.743MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +4.5% ✅ modulo_aspect_for_bytesTime: ✅ 168.766µs (SLO: <200.000µs 📉 -15.6%) vs baseline: +0.4% Memory: ✅ 42.782MB (SLO: <43.500MB 🟡 -1.7%) vs baseline: +4.4% ✅ modulo_aspect_for_bytes_bytearrayTime: ✅ 171.298µs (SLO: <200.000µs 📉 -14.4%) vs baseline: ~same Memory: ✅ 42.861MB (SLO: <43.500MB 🟡 -1.5%) vs baseline: +4.7% ✅ modulo_noaspectTime: ✅ 3.670µs (SLO: <10.000µs 📉 -63.3%) vs baseline: -1.3% Memory: ✅ 42.546MB (SLO: <43.000MB 🟡 -1.1%) vs baseline: +4.6% ✅ replace_aspectTime: ✅ 214.627µs (SLO: <300.000µs 📉 -28.5%) vs baseline: +0.1% Memory: ✅ 42.920MB (SLO: <44.000MB -2.5%) vs baseline: +4.5% ✅ replace_noaspectTime: ✅ 5.173µs (SLO: <10.000µs 📉 -48.3%) vs baseline: -0.2% Memory: ✅ 42.703MB (SLO: <43.000MB 🟡 -0.7%) vs baseline: +4.9% ✅ repr_aspectTime: ✅ 1.382µs (SLO: <10.000µs 📉 -86.2%) vs baseline: +0.3% Memory: ✅ 42.664MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +4.8% ✅ repr_noaspectTime: ✅ 0.522µs (SLO: <10.000µs 📉 -94.8%) vs baseline: -0.7% Memory: ✅ 42.664MB (SLO: <43.000MB 🟡 -0.8%) vs baseline: +4.7% ✅ rstrip_aspectTime: ✅ 19.209µs (SLO: <30.000µs 📉 -36.0%) vs baseline: +1.5% Memory: ✅ 42.821MB (SLO: <43.000MB 🟡 -0.4%) vs baseline: +4.3% ✅ rstrip_noaspectTime: ✅ 1.907µs (SLO: <10.000µs 📉 -80.9%) vs baseline: +2.3% Memory: ✅ 42.664MB (SLO: <43.000MB 🟡 -0.8%) vs baseline: +4.9% ✅ slice_aspectTime: ✅ 15.920µs (SLO: <20.000µs 📉 -20.4%) vs baseline: ~same Memory: ✅ 42.743MB (SLO: <43.000MB 🟡 -0.6%) vs baseline: +4.4% ✅ slice_noaspectTime: ✅ 0.601µs (SLO: <10.000µs 📉 -94.0%) vs baseline: +0.6% Memory: ✅ 42.743MB (SLO: <43.000MB 🟡 -0.6%) vs baseline: +5.0% ✅ stringio_aspectTime: ✅ 53.449µs (SLO: <80.000µs 📉 -33.2%) vs baseline: -0.5% Memory: ✅ 42.821MB (SLO: <43.500MB 🟡 -1.6%) vs baseline: +4.4% ✅ stringio_noaspectTime: ✅ 3.521µs (SLO: <10.000µs 📉 -64.8%) vs baseline: -0.2% Memory: ✅ 42.684MB (SLO: <43.500MB 🟡 -1.9%) vs baseline: +4.5% ✅ strip_aspectTime: ✅ 17.585µs (SLO: <20.000µs 📉 -12.1%) vs baseline: -0.3% Memory: ✅ 42.782MB (SLO: <43.000MB 🟡 -0.5%) vs baseline: +4.4% ✅ strip_noaspectTime: ✅ 1.826µs (SLO: <10.000µs 📉 -81.7%) vs baseline: +0.8% Memory: ✅ 42.703MB (SLO: <43.000MB 🟡 -0.7%) vs baseline: +4.6% ✅ swapcase_aspectTime: ✅ 18.396µs (SLO: <30.000µs 📉 -38.7%) vs baseline: +0.4% Memory: ✅ 42.939MB (SLO: <43.000MB 🟡 -0.1%) vs baseline: +4.6% ✅ swapcase_noaspectTime: ✅ 2.732µs (SLO: <10.000µs 📉 -72.7%) vs baseline: -1.2% Memory: ✅ 42.664MB (SLO: <43.000MB 🟡 -0.8%) vs baseline: +4.9% ✅ title_aspectTime: ✅ 18.175µs (SLO: <20.000µs -9.1%) vs baseline: -0.3% Memory: ✅ 42.821MB (SLO: <43.000MB 🟡 -0.4%) vs baseline: +4.4% ✅ title_noaspectTime: ✅ 2.643µs (SLO: <10.000µs 📉 -73.6%) vs baseline: ~same Memory: ✅ 42.625MB (SLO: <43.000MB 🟡 -0.9%) vs baseline: +4.9% ✅ translate_aspectTime: ✅ 24.025µs (SLO: <30.000µs 📉 -19.9%) vs baseline: 📈 +18.1% Memory: ✅ 42.782MB (SLO: <43.000MB 🟡 -0.5%) vs baseline: +4.2% ✅ translate_noaspectTime: ✅ 4.270µs (SLO: <10.000µs 📉 -57.3%) vs baseline: +0.5% Memory: ✅ 42.703MB (SLO: <43.000MB 🟡 -0.7%) vs baseline: +5.1% ✅ upper_aspectTime: ✅ 17.799µs (SLO: <30.000µs 📉 -40.7%) vs baseline: -0.4% Memory: ✅ 42.743MB (SLO: <43.000MB 🟡 -0.6%) vs baseline: +4.3% ✅ upper_noaspectTime: ✅ 2.390µs (SLO: <10.000µs 📉 -76.1%) vs baseline: +0.3% Memory: ✅ 42.802MB (SLO: <43.000MB 🟡 -0.5%) vs baseline: +5.0% 📈 iastaspectsospath - 24/24✅ ospathbasename_aspectTime: ✅ 5.189µs (SLO: <10.000µs 📉 -48.1%) vs baseline: 📈 +22.3% Memory: ✅ 41.484MB (SLO: <43.000MB -3.5%) vs baseline: +5.0% ✅ ospathbasename_noaspectTime: ✅ 4.273µs (SLO: <10.000µs 📉 -57.3%) vs baseline: -1.0% Memory: ✅ 41.386MB (SLO: <43.000MB -3.8%) vs baseline: +4.7% ✅ ospathjoin_aspectTime: ✅ 6.113µs (SLO: <10.000µs 📉 -38.9%) vs baseline: -0.3% Memory: ✅ 41.406MB (SLO: <43.000MB -3.7%) vs baseline: +4.9% ✅ ospathjoin_noaspectTime: ✅ 6.205µs (SLO: <10.000µs 📉 -38.0%) vs baseline: -0.3% Memory: ✅ 41.425MB (SLO: <43.000MB -3.7%) vs baseline: +4.8% ✅ ospathnormcase_aspectTime: ✅ 3.507µs (SLO: <10.000µs 📉 -64.9%) vs baseline: +0.2% Memory: ✅ 41.524MB (SLO: <43.000MB -3.4%) vs baseline: +5.2% ✅ ospathnormcase_noaspectTime: ✅ 3.578µs (SLO: <10.000µs 📉 -64.2%) vs baseline: +0.9% Memory: ✅ 41.406MB (SLO: <43.000MB -3.7%) vs baseline: +4.7% ✅ ospathsplit_aspectTime: ✅ 4.833µs (SLO: <10.000µs 📉 -51.7%) vs baseline: -0.3% Memory: ✅ 41.386MB (SLO: <43.000MB -3.8%) vs baseline: +5.0% ✅ ospathsplit_noaspectTime: ✅ 4.954µs (SLO: <10.000µs 📉 -50.5%) vs baseline: ~same Memory: ✅ 41.465MB (SLO: <43.000MB -3.6%) vs baseline: +5.1% ✅ ospathsplitdrive_aspectTime: ✅ 3.764µs (SLO: <10.000µs 📉 -62.4%) vs baseline: -0.2% Memory: ✅ 41.445MB (SLO: <43.000MB -3.6%) vs baseline: +4.9% ✅ ospathsplitdrive_noaspectTime: ✅ 0.748µs (SLO: <10.000µs 📉 -92.5%) vs baseline: +0.8% Memory: ✅ 41.465MB (SLO: <43.000MB -3.6%) vs baseline: +5.1% ✅ ospathsplitext_aspectTime: ✅ 4.625µs (SLO: <10.000µs 📉 -53.7%) vs baseline: +0.5% Memory: ✅ 41.465MB (SLO: <43.000MB -3.6%) vs baseline: +4.8% ✅ ospathsplitext_noaspectTime: ✅ 4.707µs (SLO: <10.000µs 📉 -52.9%) vs baseline: +0.7% Memory: ✅ 41.406MB (SLO: <43.000MB -3.7%) vs baseline: +4.8% 📈 telemetryaddmetric - 30/30✅ 1-count-metric-1-timesTime: ✅ 3.359µs (SLO: <20.000µs 📉 -83.2%) vs baseline: 📈 +10.2% Memory: ✅ 34.859MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.8% ✅ 1-count-metrics-100-timesTime: ✅ 202.275µs (SLO: <220.000µs -8.1%) vs baseline: -1.2% Memory: ✅ 34.859MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.7% ✅ 1-distribution-metric-1-timesTime: ✅ 3.348µs (SLO: <20.000µs 📉 -83.3%) vs baseline: -1.0% Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.8% ✅ 1-distribution-metrics-100-timesTime: ✅ 218.771µs (SLO: <230.000µs -4.9%) vs baseline: -0.7% Memory: ✅ 34.977MB (SLO: <35.500MB 🟡 -1.5%) vs baseline: +4.3% ✅ 1-gauge-metric-1-timesTime: ✅ 2.177µs (SLO: <20.000µs 📉 -89.1%) vs baseline: -1.3% Memory: ✅ 34.721MB (SLO: <35.500MB -2.2%) vs baseline: +4.3% ✅ 1-gauge-metrics-100-timesTime: ✅ 137.717µs (SLO: <150.000µs -8.2%) vs baseline: +0.7% Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +4.9% ✅ 1-rate-metric-1-timesTime: ✅ 3.146µs (SLO: <20.000µs 📉 -84.3%) vs baseline: -1.6% Memory: ✅ 34.937MB (SLO: <35.500MB 🟡 -1.6%) vs baseline: +5.3% ✅ 1-rate-metrics-100-timesTime: ✅ 215.429µs (SLO: <250.000µs 📉 -13.8%) vs baseline: -1.1% Memory: ✅ 34.819MB (SLO: <35.500MB 🟡 -1.9%) vs baseline: +4.8% ✅ 100-count-metrics-100-timesTime: ✅ 20.212ms (SLO: <22.000ms -8.1%) vs baseline: -0.2% Memory: ✅ 34.898MB (SLO: <35.500MB 🟡 -1.7%) vs baseline: +4.7% ✅ 100-distribution-metrics-100-timesTime: ✅ 2.277ms (SLO: <2.550ms 📉 -10.7%) vs baseline: +0.2% Memory: ✅ 34.760MB (SLO: <35.500MB -2.1%) vs baseline: +3.5% ✅ 100-gauge-metrics-100-timesTime: ✅ 1.411ms (SLO: <1.550ms -9.0%) vs baseline: +0.8% Memory: ✅ 34.800MB (SLO: <35.500MB 🟡 -2.0%) vs baseline: +4.9% ✅ 100-rate-metrics-100-timesTime: ✅ 2.215ms (SLO: <2.550ms 📉 -13.1%) vs baseline: -0.4% Memory: ✅ 34.878MB (SLO: <35.500MB 🟡 -1.8%) vs baseline: +5.0% ✅ flush-1-metricTime: ✅ 4.658µs (SLO: <20.000µs 📉 -76.7%) vs baseline: -0.6% Memory: ✅ 35.154MB (SLO: <35.500MB 🟡 -1.0%) vs baseline: +4.9% ✅ flush-100-metricsTime: ✅ 175.866µs (SLO: <250.000µs 📉 -29.7%) vs baseline: ~same Memory: ✅ 35.212MB (SLO: <35.500MB 🟡 -0.8%) vs baseline: +4.7% ✅ flush-1000-metricsTime: ✅ 2.179ms (SLO: <2.500ms 📉 -12.9%) vs baseline: +0.2% Memory: ✅ 36.078MB (SLO: <36.500MB 🟡 -1.2%) vs baseline: +4.8% 🟡 Near SLO Breach (15 suites)🟡 coreapiscenario - 10/10 (1 unstable)
|
brettlangdon
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
other than updating the DataDog/datadog-lambda-python PR/updating to target main branch or w.e lgtm!
## Description Adding the unit and integration tests from the datadog-lambda-python repository to this repository's CI. Helps catch any changes to dd-trace-py that would cause issues in datadog-lambda-python before merging/release. <!-- Provide an overview of the change and motivation for the change --> ## Testing Gitlab. Verified that if trigger-serverless-lambda-tests downstream pipeline fails, the whole ddtrace pipeline will fail and the dd-gitlab/default-pipeline job will show as failed in the PR using [this Gitlab pipeline](https://gitlab.ddbuild.io/DataDog/apm-reliability/dd-trace-py/-/pipelines/86791461). <!-- Describe your testing strategy or note what tests are included --> ## Risks <!-- Note any risks associated with this change, or "None" if no risks --> ## Additional Notes [Related PR in datadog-lambda-python](DataDog/datadog-lambda-python#700). <!-- Any other information that would be helpful for reviewers -->
Description
Adding the unit and integration tests from the datadog-lambda-python repository to this repository's CI. Helps catch any changes to dd-trace-py that would cause issues in datadog-lambda-python before merging/release.
Testing
Gitlab.
Verified that if trigger-serverless-lambda-tests downstream pipeline fails, the whole ddtrace pipeline will fail and the dd-gitlab/default-pipeline job will show as failed in the PR using this Gitlab pipeline.
Risks
Additional Notes
Related PR in datadog-lambda-python.