Reference implementation of HEADNet algorithm
Authors: David MCDONALD (davemcdonald93@gmail.com) and Shan HE (s.he@cs.bham.ac.uk)
- Python3
- Numpy
- Scipy
- Scikit-learn
- Scikit-multilearn
- Keras
The conda environment is described in environment.yml.
Run
conda env create -f headnet_env.yml
to create the environment, and
conda activate headnet-env
to activate it.
Run the code with
python main.py --graph path/to/graph.npz --features path/to/features.csv --embedding path/to/save/embedding.csv -e *num_epochs* --dim *embedding_dim*
Additional options can be viewed with
python main.py --help
Graphs are given as sparse adjacency matrices
labels and features should be comma separated tables indexed by node id
If you find this useful, please use the following citation (under review)
@article{mcdonald2020headnet,
title={HEADNet: Hyperbolic Embedding of Attributed Directed Networks},
author={McDonald, David and He, Shan},
journal={IEEE Transactions on Neural Networks and Learning Systems},
year={2020},
publisher={IEEE}
}