Skip to content

Commit

Permalink
Added CoreML export notebook & method for Apple devices. (#1068)
Browse files Browse the repository at this point in the history
  • Loading branch information
avideci authored May 23, 2023
1 parent a594497 commit a9cee54
Show file tree
Hide file tree
Showing 6 changed files with 3,727 additions and 13 deletions.
3 changes: 2 additions & 1 deletion src/super_gradients/training/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@
import super_gradients.training.models.user_models as user_models
from super_gradients.training.models.model_factory import get, get_model_name
from super_gradients.training.models.arch_params_factory import get_arch_params
from super_gradients.training.models.conversion import convert_to_onnx, convert_from_config
from super_gradients.training.models.conversion import convert_to_coreml, convert_to_onnx, convert_from_config


from super_gradients.common.object_names import Models
Expand Down Expand Up @@ -280,6 +280,7 @@
"get",
"get_model_name",
"get_arch_params",
"convert_to_coreml",
"convert_to_onnx",
"convert_from_config",
"ARCHITECTURES",
Expand Down
126 changes: 118 additions & 8 deletions src/super_gradients/training/models/conversion.py
Original file line number Diff line number Diff line change
@@ -1,26 +1,34 @@
import os
import pathlib
from pathlib import Path

import hydra
import numpy as np
import onnx
import torch
from omegaconf import DictConfig
import numpy as np
from onnxsim import simplify
from torch.nn import Identity

from super_gradients.common.abstractions.abstract_logger import get_logger
from super_gradients.common.decorators.factory_decorator import resolve_param
from super_gradients.common.environment.cfg_utils import load_experiment_cfg
from super_gradients.common.environment.checkpoints_dir_utils import get_checkpoints_dir_path
from super_gradients.common.factories.transforms_factory import TransformsFactory
from super_gradients.training import models
from super_gradients.common.environment.checkpoints_dir_utils import get_checkpoints_dir_path
from super_gradients.common.environment.cfg_utils import load_experiment_cfg
from super_gradients.training.utils.sg_trainer_utils import parse_args
import os
import pathlib

from onnxsim import simplify
import onnx

logger = get_logger(__name__)

ct = None

try:
import coremltools as coreml_tools

ct = coreml_tools
except (ImportError, ModuleNotFoundError):
pass


class ConvertableCompletePipelineModel(torch.nn.Module):
"""
Expand Down Expand Up @@ -48,6 +56,108 @@ def forward(self, x):
return self.post_process(self.model(self.pre_process(x)))


@resolve_param("pre_process", TransformsFactory())
@resolve_param("post_process", TransformsFactory())
def convert_to_coreml(
model: torch.nn.Module,
out_path: str,
input_size: tuple = None,
pre_process: torch.nn.Module = None,
post_process: torch.nn.Module = None,
prep_model_for_conversion_kwargs=None,
export_as_ml_program=False,
torch_trace_kwargs=None,
):
"""
Exports a given SG model to CoreML mlprogram or package.
:param model: torch.nn.Module, model to export to ONNX.
:param out_path: str, destination path for the .onnx file.
:param input_size: Input shape without batch dimensions ([C,H,W]). Batch size assumed to be 1.
:param pre_process: torch.nn.Module, preprocessing pipeline, will be resolved by TransformsFactory()
:param post_process: torch.nn.Module, postprocessing pipeline, will be resolved by TransformsFactory()
:param prep_model_for_conversion_kwargs: dict, for SgModules- args to be passed to model.prep_model_for_conversion
prior to torch.onnx.export call. Supported keys are:
- input_size - Shape of inputs with batch dimension, [C,H,W] for image inputs.
When true, the simplified model will be saved in out_path (default=True).
:param export_as_ml_program: Whether to convert to the new program format (better) or legacy coreml proto file
(Supports more iOS versions and devices, but this format will be deprecated at some point).
:param torch_trace_kwargs: kwargs for torch.jit.trace
:return: Path
"""
if ct is None:
raise ImportError(
'"coremltools" is required for CoreML export, but is not installed. Please install CoreML Tools using:\n'
' "python3 -m pip install coremltools" and try again (Tested with version 6.3.0);'
)

logger.debug("Building model...")
logger.debug(model)
logger.debug("Model child nodes:")
logger.debug(next(model.named_children()))

if not os.path.isdir(pathlib.Path(out_path).parent.resolve()):
raise FileNotFoundError(f"Could not find destination directory {out_path} for the ONNX file.")
torch_trace_kwargs = torch_trace_kwargs or dict()
prep_model_for_conversion_kwargs = prep_model_for_conversion_kwargs or dict()

if input_size is not None:
input_size = (1, *input_size)
logger.warning(
f"input_shape is deprecated and will be removed in the next major release."
f"Use the convert_to_coreml(..., prep_model_for_conversion_kwargs(input_size={input_size})) instead"
)
prep_model_for_conversion_kwargs["input_size"] = input_size

if "input_size" not in prep_model_for_conversion_kwargs:
raise KeyError("input_size must be provided in prep_model_for_conversion_kwargs")

input_size = prep_model_for_conversion_kwargs["input_size"]

# TODO: support more than 1 input when prep_for_conversoin will support it.
example_inputs = [torch.Tensor(np.zeros(input_size))]

if not out_path.endswith(".mlpackage") and not out_path.endswith(".mlmodel"):
out_path += ".mlpackage" if export_as_ml_program else ".mlmodel"

complete_model = ConvertableCompletePipelineModel(model, pre_process, post_process, **prep_model_for_conversion_kwargs)

# Set the model in evaluation mode.
complete_model.eval()

logger.info("Creating torch jit trace...")
traced_model = torch.jit.trace(complete_model, example_inputs, **torch_trace_kwargs)
logger.info("Tracing the model with the provided inputs...")
out = traced_model(*example_inputs) # using * because example_inputs is a list
logger.info(f"Inferred output shapes: {[o.shape for o in out]}")
if export_as_ml_program:
coreml_model = ct.convert(
traced_model, convert_to="mlprogram", inputs=[ct.ImageType(name=f"x_{i + 1}", shape=_.shape) for i, _ in enumerate(example_inputs)]
)
else:
coreml_model = ct.convert(traced_model, inputs=[ct.ImageType(name=f"x_{i + 1}", shape=_.shape) for i, _ in enumerate(example_inputs)])

spec = coreml_model.get_spec()
logger.debug(spec.description)

# Changing the input names:
# In CoreML, the input name is compiled into classes (named keyword argument in predict).
# We want to re-use the same names among different models to make research easier.
# We normalize the inputs names to be x_1, x_2, etc.
for i, _input in enumerate(spec.description.input):
new_input_name = "x_" + str(i + 1)
logger.info(f"Renaming input {_input.name} to {new_input_name}")
ct.utils.rename_feature(spec, _input.name, new_input_name)

# Re-Initializing the model with the new spec
coreml_model = ct.models.MLModel(spec, weights_dir=coreml_model.weights_dir)

# Saving the model
coreml_model.save(out_path)
logger.info(f"CoreML model successfully save to {os.path.abspath(out_path)}")
return out_path


@resolve_param("pre_process", TransformsFactory())
@resolve_param("post_process", TransformsFactory())
def convert_to_onnx(
Expand Down
56 changes: 56 additions & 0 deletions tests/unit_tests/export_coreml_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
import os
import tempfile
import unittest

from torchvision.transforms import Compose, Normalize, Resize

from super_gradients.common.object_names import Models
from super_gradients.training import models
from super_gradients.training.transforms import Standardize


class TestModelsCoreMLExport(unittest.TestCase):
def test_models_onnx_export_with_explicit_input_size(self):
pretrained_model = models.get(Models.RESNET18, num_classes=1000, pretrained_weights="imagenet")
preprocess = Compose([Resize(224), Standardize(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
with tempfile.TemporaryDirectory() as tmpdirname:
out_path = os.path.join(tmpdirname, "resnet18.mlmodel")
models.convert_to_coreml(model=pretrained_model, out_path=out_path, input_size=(3, 256, 256), pre_process=preprocess)
self.assertTrue(os.path.isfile(out_path))

def test_models_onnx_export_without_explicit_input_size_raises_error(self):
pretrained_model = models.get(Models.RESNET18, num_classes=1000, pretrained_weights="imagenet")
preprocess = Compose([Resize(224), Standardize(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
with self.assertRaises(KeyError):
models.convert_to_coreml(model=pretrained_model, out_path="some-output-path.coreml", pre_process=preprocess)

def test_models_coreml_export(self, **export_kwargs):
pretrained_model = models.get(Models.YOLO_NAS_S, num_classes=1000, pretrained_weights="coco")

# Just for the sake of testing, not really COCO preprocessing
preprocess = Compose([Resize(224), Standardize(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
with tempfile.TemporaryDirectory() as tmpdirname:
out_path = os.path.join(tmpdirname, "yolo_nas_s")
model_path = models.convert_to_coreml(
model=pretrained_model,
out_path=out_path,
pre_process=preprocess,
prep_model_for_conversion_kwargs=dict(input_size=(1, 3, 640, 640)),
**export_kwargs,
)

if export_kwargs.get("export_as_ml_program"):
# Expecting a directory
self.assertTrue(os.path.isdir(model_path))
self.assertTrue(model_path.endswith(".mlpackage"))
else:
# Expecting a single file
self.assertTrue(os.path.isfile(model_path))
self.assertTrue(model_path.endswith(".mlmodel"))

def test_models_coreml_export_as_mlprogram(self):
self.test_models_coreml_export(export_as_ml_program=True)


if __name__ == "__main__":
unittest.main()
2 changes: 2 additions & 0 deletions tests/unit_tests/export_onnx_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ def test_models_onnx_export_with_deprecated_input_shape(self):
with tempfile.TemporaryDirectory() as tmpdirname:
out_path = os.path.join(tmpdirname, "resnet18.onnx")
models.convert_to_onnx(model=pretrained_model, out_path=out_path, input_shape=(3, 256, 256), pre_process=preprocess)
self.assertTrue(os.path.exists(out_path))

def test_models_onnx_export(self):
pretrained_model = models.get(Models.RESNET18, num_classes=1000, pretrained_weights="imagenet")
Expand All @@ -24,6 +25,7 @@ def test_models_onnx_export(self):
models.convert_to_onnx(
model=pretrained_model, out_path=out_path, pre_process=preprocess, prep_model_for_conversion_kwargs=dict(input_size=(1, 3, 640, 640))
)
self.assertTrue(os.path.exists(out_path))


if __name__ == "__main__":
Expand Down
Loading

0 comments on commit a9cee54

Please sign in to comment.