-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpretrain_graphlog.py
508 lines (413 loc) · 22 KB
/
pretrain_graphlog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import argparse
from loader import MoleculeDataset
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import numpy as np
import os, sys
import pdb
import copy
import random
from model import GNN, ProjectNet
from sklearn.metrics import roc_auc_score
from splitters import scaffold_split, random_split, random_scaffold_split
import pandas as pd
from util import ExtractSubstructureContextPair
from torch_geometric.data import DataLoader
from dataloader import DataLoaderSubstructContext
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool
from tensorboardX import SummaryWriter
# Graph pooling functions
def pool_func(x, batch, mode = "mean"):
if mode == "sum":
return global_add_pool(x, batch)
elif mode == "mean":
return global_mean_pool(x, batch)
elif mode == "max":
return global_max_pool(x, batch)
# Mask some nodes in a graph
def mask_nodes(batch, args, num_atom_type=119):
masked_node_indices = list()
# select indices of masked nodes
for i in range(batch.batch[-1] + 1):
idx = torch.nonzero((batch.batch == i).float()).squeeze(-1)
num_node = idx.shape[0]
if args.mask_num == 0:
sample_size = int(num_node * args.mask_rate + 1)
else:
sample_size = min(args.mask_num, int(num_node * 0.5))
masked_node_idx = random.sample(idx.tolist(), sample_size)
masked_node_idx.sort()
masked_node_indices += masked_node_idx
batch.masked_node_indices = torch.tensor(masked_node_indices)
# mask nodes' features
for node_idx in masked_node_indices:
batch.x[node_idx] = torch.tensor([num_atom_type, 0])
return batch
# NCE loss within a graph
def intra_NCE_loss(node_reps, node_modify_reps, batch, tau=0.1, epsilon=1e-6):
node_reps_norm = torch.norm(node_reps, dim = 1).unsqueeze(-1)
node_modify_reps_norm = torch.norm(node_modify_reps, dim = 1).unsqueeze(-1)
sim = torch.mm(node_reps, node_modify_reps.t()) / (
torch.mm(node_reps_norm, node_modify_reps_norm.t()) + epsilon)
exp_sim = torch.exp(sim / tau)
mask = torch.stack([(batch.batch == i).float() for i in batch.batch.tolist()], dim = 1)
exp_sim_mask = exp_sim * mask
exp_sim_all = torch.index_select(exp_sim_mask, 1, batch.masked_node_indices)
exp_sim_positive = torch.index_select(exp_sim_all, 0, batch.masked_node_indices)
positive_ratio = exp_sim_positive.sum(0) / (exp_sim_all.sum(0) + epsilon)
NCE_loss = -torch.log(positive_ratio).sum() / batch.masked_node_indices.shape[0]
mask_select = torch.index_select(mask, 1, batch.masked_node_indices)
thr = 1. / mask_select.sum(0)
correct_cnt = (positive_ratio > thr).float().sum()
return NCE_loss, correct_cnt
# NCE loss across different graphs
def inter_NCE_loss(graph_reps, graph_modify_reps, device, tau=0.1, epsilon=1e-6):
graph_reps_norm = torch.norm(graph_reps, dim = 1).unsqueeze(-1)
graph_modify_reps_norm = torch.norm(graph_modify_reps, dim = 1).unsqueeze(-1)
sim = torch.mm(graph_reps, graph_modify_reps.t()) / (
torch.mm(graph_reps_norm, graph_modify_reps_norm.t()) + epsilon)
exp_sim = torch.exp(sim / tau)
mask = torch.eye(graph_reps.shape[0]).to(device)
positive = (exp_sim * mask).sum(0)
negative = (exp_sim * (1 - mask)).sum(0)
positive_ratio = positive / (positive + negative + epsilon)
NCE_loss = -torch.log(positive_ratio).sum() / graph_reps.shape[0]
thr = 1. / ((1 - mask).sum(0) + 1.)
correct_cnt = (positive_ratio > thr).float().sum()
return NCE_loss, correct_cnt
# NCE loss for global-local mutual information maximization
def gl_NCE_loss(node_reps, graph_reps, batch, tau=0.1, epsilon=1e-6):
node_reps_norm = torch.norm(node_reps, dim = 1).unsqueeze(-1)
graph_reps_norm = torch.norm(graph_reps, dim = 1).unsqueeze(-1)
sim = torch.mm(node_reps, graph_reps.t()) / (
torch.mm(node_reps_norm, graph_reps_norm.t()) + epsilon)
exp_sim = torch.exp(sim / tau)
mask = torch.stack([(batch == i).float() for i in range(graph_reps.shape[0])], dim = 1)
positive = exp_sim * mask
negative = exp_sim * (1 - mask)
positive_ratio = positive / (positive + negative.sum(0).unsqueeze(0) + epsilon)
NCE_loss = -torch.log(positive_ratio + (1 - mask)).sum() / node_reps.shape[0]
thr = 1. / ((1 - mask).sum(0) + 1.).unsqueeze(0)
correct_cnt = (positive_ratio > thr).float().sum()
return NCE_loss, correct_cnt
# NCE loss between graphs and prototypes
def proto_NCE_loss(graph_reps, tau=0.1, epsilon=1e-6):
global proto, proto_connection
# similarity for original and modified graphs
graph_reps_norm = torch.norm(graph_reps, dim=1).unsqueeze(-1)
exp_sim_list = []
mask_list = []
NCE_loss = 0
for i in range(len(proto)-1, -1, -1):
tmp_proto = proto[i]
proto_norm = torch.norm(tmp_proto, dim=1).unsqueeze(-1)
sim = torch.mm(graph_reps, tmp_proto.t()) / (
torch.mm(graph_reps_norm, proto_norm.t()) + epsilon)
exp_sim = torch.exp(sim / tau)
if i != (len(proto) - 1):
# apply the connection mask
exp_sim_last = exp_sim_list[-1]
idx_last = torch.argmax(exp_sim_last, dim = 1).unsqueeze(-1)
connection = proto_connection[i]
connection_mask = (connection.unsqueeze(0) == idx_last.float()).float()
exp_sim = exp_sim * connection_mask
# define NCE loss between prototypes from consecutive layers
upper_proto = proto[i+1]
upper_proto_norm = torch.norm(upper_proto, dim=1).unsqueeze(-1)
proto_sim = torch.mm(tmp_proto, upper_proto.t()) / (
torch.mm(proto_norm, upper_proto_norm.t()) + epsilon)
proto_exp_sim = torch.exp(proto_sim / tau)
proto_positive_list = [proto_exp_sim[j, connection[j].long()] for j in range(proto_exp_sim.shape[0])]
proto_positive = torch.stack(proto_positive_list, dim=0)
proto_positive_ratio = proto_positive / (proto_exp_sim.sum(1) + epsilon)
NCE_loss += -torch.log(proto_positive_ratio).mean()
mask = (exp_sim == exp_sim.max(1)[0].unsqueeze(-1)).float()
exp_sim_list.append(exp_sim)
mask_list.append(mask)
# define NCE loss between graph embedding and prototypes
for i in range(len(proto)):
exp_sim = exp_sim_list[i]
mask = mask_list[i]
positive = exp_sim * mask
negative = exp_sim * (1 - mask)
positive_ratio = positive.sum(1) / (positive.sum(1) + negative.sum(1) + epsilon)
NCE_loss += -torch.log(positive_ratio).mean()
return NCE_loss
# Update prototypes with batch information
def update_proto_lowest(graph_reps, decay_ratio=0.7, epsilon=1e-6):
global proto, proto_state
graph_reps_norm = torch.norm(graph_reps, dim=1).unsqueeze(-1)
proto_norm = torch.norm(proto[0], dim=1).unsqueeze(-1)
sim = torch.mm(graph_reps, proto[0].t()) / (
torch.mm(graph_reps_norm, proto_norm.t()) + epsilon)
# update states of prototypes
mask = (sim == sim.max(1)[0].unsqueeze(-1)).float()
cnt = mask.sum(0)
proto_state[0].data = proto_state[0].data + cnt.data
# update prototypes
batch_cnt = mask.t() / (cnt.unsqueeze(-1) + epsilon)
batch_mean = torch.mm(batch_cnt, graph_reps)
proto[0].data = proto[0].data * (cnt == 0).float().unsqueeze(-1).data + (
proto[0].data * decay_ratio + batch_mean.data * (1 - decay_ratio)) * (cnt != 0).float().unsqueeze(-1).data
return
# Initialze prototypes and their state
def init_proto_lowest(args, model, proj, loader, device, num_iter = 5):
model.eval()
proj.eval()
for iter in range(num_iter):
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
batch = batch.to(device)
# get node and graph representations
node_reps = model(batch.x, batch.edge_index, batch.edge_attr)
graph_reps = pool_func(node_reps, batch.batch, mode=args.graph_pooling)
# feature projection
graph_reps_proj = proj(graph_reps)
# update prototypes
update_proto_lowest(graph_reps_proj, decay_ratio = args.decay_ratio)
global proto, proto_state
idx = torch.nonzero((proto_state[0] >= 2).float()).squeeze(-1)
proto_selected = torch.index_select(proto[0], 0, idx)
proto_selected.requires_grad = True
return proto_selected
# Initialze prototypes and their state
def init_proto(args, index, device, num_iter = 20):
global proto, proto_state
proto_connection = torch.zeros(proto[index-1].shape[0]).to(device)
for iter in range(num_iter):
for i in range(proto[index-1].shape[0]):
# update the closest prototype
sim = torch.mm(proto[index], proto[index-1][i,:].unsqueeze(-1)).squeeze(-1)
idx = torch.argmax(sim)
if iter == (num_iter - 1):
proto_state[index][idx] = 1
proto_connection[i] = idx
proto[index].data[idx, :] = proto[index].data[idx, :] * args.decay_ratio + \
proto[index-1].data[i, :] * (1 - args.decay_ratio)
# penalize rival
sim[idx] = 0
rival_idx = torch.argmax(sim)
proto[index].data[rival_idx, :] = proto[index].data[rival_idx, :] * (2 - args.decay_ratio) - \
proto[index-1].data[i, :] * (1 - args.decay_ratio)
indices = torch.nonzero(proto_state[index]).squeeze(-1)
proto_selected = torch.index_select(proto[index], 0, indices)
proto_selected.requires_grad = True
for i in range(indices.shape[0]):
idx = indices[i]
idx_connection = torch.nonzero((proto_connection == idx.float()).float()).squeeze(-1)
proto_connection[idx_connection] = i
return proto_selected, proto_connection
# For one epoch pretraining
def pretrain(args, model, proj, loader, optimizer, device):
model.train()
proj.train()
NCE_loss_intra_cnt = 0
NCE_loss_inter_cnt = 0
correct_intra_cnt = 0
correct_inter_cnt = 0
total_intra_cnt = 0
total_inter_cnt = 0
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
batch_modify = copy.deepcopy(batch)
batch_modify = mask_nodes(batch_modify, args)
batch, batch_modify = batch.to(device), batch_modify.to(device)
# get node and graph representations
node_reps = model(batch.x, batch.edge_index, batch.edge_attr)
node_modify_reps = model(batch_modify.x, batch_modify.edge_index, batch_modify.edge_attr)
graph_reps = pool_func(node_reps, batch.batch, mode=args.graph_pooling)
graph_modify_reps = pool_func(node_modify_reps, batch_modify.batch, mode=args.graph_pooling)
# feature projection
node_reps_proj = proj(node_reps)
node_modify_reps_proj = proj(node_modify_reps)
graph_reps_proj = proj(graph_reps)
graph_modify_reps_proj = proj(graph_modify_reps)
# NCE loss
NCE_loss_intra, correct_intra = intra_NCE_loss(node_reps_proj, node_modify_reps_proj,
batch_modify, tau=args.tau)
NCE_loss_inter, correct_inter = inter_NCE_loss(graph_reps_proj, graph_modify_reps_proj,
device, tau=args.tau)
NCE_loss_intra_cnt += NCE_loss_intra.item()
NCE_loss_inter_cnt += NCE_loss_inter.item()
correct_intra_cnt += correct_intra
correct_inter_cnt += correct_inter
total_intra_cnt += batch_modify.masked_node_indices.shape[0]
total_inter_cnt += graph_reps.shape[0]
# optimization
optimizer.zero_grad()
NCE_loss = args.alpha * NCE_loss_intra + args.beta * NCE_loss_inter
NCE_loss.backward()
optimizer.step()
if (step + 1) % args.disp_interval == 0:
print(
'iteration: %d, intra NCE loss: %f, intra acc: %f, inter NCE loss: %f, inter acc: %f' % (
step + 1, NCE_loss_intra.item(), float(correct_intra_cnt) / float(total_intra_cnt),
NCE_loss_inter.item(), float(correct_inter_cnt) / float(total_inter_cnt)))
return NCE_loss_intra_cnt / step, float(correct_intra_cnt) / float(
total_intra_cnt), NCE_loss_inter_cnt / step, float(correct_inter_cnt) / float(total_inter_cnt)
# For every epoch training
def train(args, model, proj, loader, optimizer, device):
global proto, proto_connection
model.train()
proj.train()
NCE_loss_intra_cnt = 0
NCE_loss_inter_cnt = 0
NCE_loss_proto_cnt = 0
correct_intra_cnt = 0
correct_inter_cnt = 0
total_intra_cnt = 0
total_inter_cnt = 0
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
batch_modify = copy.deepcopy(batch)
batch_modify = mask_nodes(batch_modify, args)
batch, batch_modify = batch.to(device), batch_modify.to(device)
# get node and graph representations
node_reps = model(batch.x, batch.edge_index, batch.edge_attr)
node_modify_reps = model(batch_modify.x, batch_modify.edge_index, batch_modify.edge_attr)
graph_reps = pool_func(node_reps, batch.batch, mode=args.graph_pooling)
graph_modify_reps = pool_func(node_modify_reps, batch_modify.batch, mode=args.graph_pooling)
# feature projection
node_reps_proj = proj(node_reps)
node_modify_reps_proj = proj(node_modify_reps)
graph_reps_proj = proj(graph_reps)
graph_modify_reps_proj = proj(graph_modify_reps)
# NCE loss
NCE_loss_intra, correct_intra = intra_NCE_loss(node_reps_proj, node_modify_reps_proj,
batch_modify, tau=args.tau)
NCE_loss_inter, correct_inter = inter_NCE_loss(graph_reps_proj, graph_modify_reps_proj,
device, tau=args.tau)
NCE_loss_proto = proto_NCE_loss(graph_reps_proj, tau=args.tau)
NCE_loss_intra_cnt += NCE_loss_intra.item()
NCE_loss_inter_cnt += NCE_loss_inter.item()
NCE_loss_proto_cnt += NCE_loss_proto.item()
correct_intra_cnt += correct_intra
correct_inter_cnt += correct_inter
total_intra_cnt += batch_modify.masked_node_indices.shape[0]
total_inter_cnt += graph_reps.shape[0]
# optimization
optimizer.zero_grad()
NCE_loss = args.alpha * NCE_loss_intra + args.beta * NCE_loss_inter + \
args.gamma * NCE_loss_proto
NCE_loss.backward()
optimizer.step()
if (step + 1) % args.disp_interval == 0:
print(
'iteration: %d, intra NCE loss: %f, intra acc: %f, inter NCE loss: %f, inter acc: %f' % (
step + 1, NCE_loss_intra.item(), float(correct_intra_cnt) / float(total_intra_cnt),
NCE_loss_inter.item(), float(correct_inter_cnt) / float(total_inter_cnt)))
template = 'iteration: %d, proto NCE loss: %f'
value_list = [step + 1, NCE_loss_proto.item()]
for i in range(args.hierarchy):
template += (', active num ' + str(i+1) + ': %d')
value_list.append(proto[i].shape[0])
print (template % tuple(value_list))
return NCE_loss_intra_cnt / step, float(correct_intra_cnt) / float(
total_intra_cnt), NCE_loss_inter_cnt / step, float(correct_inter_cnt) / float(
total_inter_cnt), NCE_loss_proto_cnt / step
def main():
# Training settings
parser = argparse.ArgumentParser(description='GraphLoG for GNN pre-training')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=512,
help='input batch size for training (default: 512)')
parser.add_argument('--local_epochs', type=int, default=1,
help='number of epochs for local learning (default: 1)')
parser.add_argument('--global_epochs', type=int, default=10,
help='number of epochs for global learning (default: 10)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.001)')
parser.add_argument('--decay', type=float, default=0,
help='weight decay (default: 0)')
parser.add_argument('--num_layer', type=int, default=5,
help='number of GNN message passing layers (default: 5).')
parser.add_argument('--emb_dim', type=int, default=300,
help='embedding dimensions (default: 300)')
parser.add_argument('--dropout_ratio', type=float, default=0,
help='dropout ratio (default: 0)')
parser.add_argument('--mask_rate', type=float, default=0.3,
help='dropout ratio (default: 0.3)')
parser.add_argument('--mask_num', type=int, default=0,
help='the number of modified nodes (default: 0)')
parser.add_argument('--JK', type=str, default="last",
help='how the node features are combined across layers. last, sum, max or concat')
parser.add_argument('--graph_pooling', type=str, default="mean",
help='graph level pooling (sum, mean, max)')
parser.add_argument('--dataset', type=str, default='zinc_standard_agent',
help='root directory of dataset for pretraining')
parser.add_argument('--output_model_file', type=str, default='', help='filename to output the model')
parser.add_argument('--gnn_type', type=str, default="gin")
parser.add_argument('--seed', type=int, default=0, help="Seed for splitting dataset.")
parser.add_argument('--num_workers', type=int, default=1, help='number of workers for dataset loading')
parser.add_argument('--tau', type=float, default=0.04, help='the temperature parameter for softmax')
parser.add_argument('--decay_ratio', type=float, default=0.95, help='the decay ratio for moving average')
parser.add_argument('--num_proto', type=int, default=50, help='the number of initial prototypes')
parser.add_argument('--hierarchy', type=int, default=3, help='the number of hierarchy')
parser.add_argument('--alpha', type=float, default=1, help='the weight of intra-graph NCE loss')
parser.add_argument('--beta', type=float, default=1, help='the weight of inter-graph NCE loss')
parser.add_argument('--gamma', type=float, default=0.1, help='the weight of prototype NCE loss')
parser.add_argument('--disp_interval', type=int, default=10, help='the display interval')
args = parser.parse_args()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
print("num GNN layer: %d" % (args.num_layer))
# set up dataset and transform function.
dataset = MoleculeDataset("./dataset/" + args.dataset, dataset=args.dataset)
loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
# set up pretraining models and feature projector
model = GNN(args.num_layer, args.emb_dim, JK=args.JK, drop_ratio=args.dropout_ratio,
gnn_type=args.gnn_type).to(device)
if args.JK == 'concat':
proj = ProjectNet((args.num_layer + 1) * args.emb_dim).to(device)
else:
proj = ProjectNet(args.emb_dim).to(device)
# set up the optimizer for pretraining
model_param_group = [{"params": model.parameters(), "lr": args.lr},
{"params": proj.parameters(), "lr": args.lr}]
optimizer_pretrain = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay)
# initialize prototypes and their state
global proto, proto_state, proto_connection
if args.JK == 'concat':
proto = [torch.rand((args.num_proto, (args.num_layer + 1) * args.emb_dim)).to(device) for i in
range(args.hierarchy)]
else:
proto = [torch.rand((args.num_proto, args.emb_dim)).to(device) for i in range(args.hierarchy)]
proto_state = [torch.zeros(args.num_proto).to(device) for i in range(args.hierarchy)]
proto_connection = []
# pre-training with only local objective
for epoch in range(1, args.local_epochs + 1):
print("====epoch " + str(epoch))
train_intra_loss, train_intra_acc, train_inter_loss, train_inter_acc = pretrain(
args, model, proj, loader, optimizer_pretrain, device)
print(train_intra_loss, train_intra_acc, train_inter_loss, train_inter_acc)
print("")
# initialize prototypes and their state according to pretrained representations
print("Initalize prototypes: layer 1")
tmp_proto = init_proto_lowest(args, model, proj, loader, device)
proto[0] = tmp_proto
for i in range(1, args.hierarchy):
print ("Initialize prototypes: layer ", i + 1)
tmp_proto, tmp_proto_connection = init_proto(args, i, device)
proto[i] = tmp_proto
proto_connection.append(tmp_proto_connection)
# set up the optimizer
model_param_group = [{"params": model.parameters(), "lr": args.lr},
{"params": proj.parameters(), "lr": args.lr}]
for i in range(args.hierarchy):
model_param_group += [{'params': proto[i], 'lr': args.lr, 'weight_decay': 0}]
optimizer = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay)
# Training with local and global objectives
for epoch in range(1, args.global_epochs + 1):
print("====epoch " + str(epoch))
train_intra_loss, train_intra_acc, train_inter_loss, train_inter_acc, train_proto_loss = train(
args, model, proj, loader, optimizer, device)
print(train_intra_loss, train_intra_acc, train_inter_loss, train_inter_acc, train_proto_loss)
if not args.output_model_file == "":
torch.save(model.state_dict(), args.output_model_file + ".pth")
os.system('watch nvidia-smi')
if __name__ == "__main__":
main()