-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_loops.py
203 lines (165 loc) · 7.87 KB
/
train_loops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from argparse import Namespace
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch_geometric.data import DataLoader, Data
from torch_scatter import scatter_mean
from utils import soft_nll_loss
from belief_propagation import max_product_bp, sum_product_bp, get_potential
def solve_proxy_spn(args: Namespace, dataloader: DataLoader, model: nn.Module, optimizer: optim.Optimizer, device: torch.device):
"""
Solve the proxy optimization problem of SPN for one epoch.
Args:
args: Arguments from the command line. See config.py.
dataloader: DataLoader for the training set.
model: The model to be trained.
optimizer: Optimizer for training the model.
device: The device to be used.
Returns:
total_node_loss: Node-level cross entropy for the training set.
total_edge_loss: Edge-level cross entropy for the training set.
"""
model.train()
loss_op = nn.CrossEntropyLoss()
total_node_loss, total_edge_loss = 0, 0
for data in dataloader:
data = data.to(device)
optimizer.zero_grad()
node_logit, edge_logit = model(data)
node_loss = loss_op(node_logit, data.y)
total_node_loss += node_loss.item() * data.num_graphs
edge_loss = loss_op(edge_logit, data.edge_labels)
total_edge_loss += edge_loss.item() * data.num_graphs
loss = node_loss + args.solve_proxy_edge_lr/args.solve_proxy_node_lr * edge_loss
loss.backward()
optimizer.step()
return total_node_loss, total_edge_loss
def refine_spn(args: Namespace, dataloader: DataLoader, model: nn.Module, optimizer: optim.Optimizer, device: torch.device):
"""
Refine the SPN for one epoch.
Args:
args: Arguments from the command line. See config.py.
dataloader: DataLoader for the training set.
model: The model to be trained.
optimizer: Optimizer for training the model.
device: The device to be used.
Returns:
total_node_loss: Node-level loss for the training set.
total_edge_loss: Edge-level loss for the training set.
total_node_pos: Node-level positive loss for the training set. (See Eq. 11)
total_node_neg: Node-level negative loss for the training set. (See Eq. 11)
total_edge_pos: Edge-level positive loss for the training set. (See Eq. 11)
total_edge_neg: Edge-level negative loss for the training set. (See Eq. 11)
"""
model.train()
total_node_loss, total_edge_loss, total_node_pos, total_node_neg, total_edge_pos, total_edge_neg = 0., 0., 0., 0., 0., 0.
for data in dataloader:
data = data.to(device)
optimizer.zero_grad()
pred_node, pred_edge = get_potential(args, data, model, dataloader.dataset.num_classes)
node_marginal, edge_marginal = sum_product_bp(args, pred_node.detach(), pred_edge.detach(), data.edge_index, data.edge_index_reversed, device, dataloader.dataset.num_classes)
node_target = data.y
node_loss_pos = F.nll_loss(pred_node, node_target)
node_loss_neg = soft_nll_loss(pred_node, node_marginal.detach())
node_loss = node_loss_pos - node_loss_neg
total_node_loss += node_loss.item()
edge_target = data.edge_labels
edge_loss_pos = F.nll_loss(pred_edge, edge_target)
edge_loss_neg = soft_nll_loss(pred_edge, edge_marginal.detach())
edge_loss = edge_loss_pos - edge_loss_neg
total_edge_loss += edge_loss.item()
total_node_pos += node_loss_pos.item()
total_node_neg += node_loss_neg.item()
total_edge_pos += edge_loss_pos.item()
total_edge_neg += edge_loss_neg.item()
loss = node_loss + args.refine_edge_lr/args.refine_node_lr * edge_loss
loss.backward()
optimizer.step()
return total_node_loss, total_edge_loss, total_node_pos, total_node_neg, total_edge_pos, total_edge_neg
def _compute_accuracy(args: Namespace, pred: torch.Tensor, target: torch.Tensor, batch: torch.Tensor):
correct = (pred == target).float()
if args.dataset == 'dblp' or args.dataset.startswith('ppi'):
acc = correct.mean().item()
else:
graph_acc = scatter_mean(correct, index=batch, dim=0, dim_size=batch.max().item() + 1)
acc = (graph_acc == 1.).float().mean().item()
return acc
@torch.no_grad()
def test_gnn(args: Namespace, dataloader: DataLoader, model: nn.Module, device: torch.device, return_pred: bool = False):
"""
Predict node and edge labels separately with GNNs and calculate accuracies.
Args:
args: Arguments from the command line. See config.py.
dataloader: DataLoader for the training set.
model: The model to be trained.
device: The device to be used.
return_pred: Whether to return the node label predictions.
Returns:
node_acc: Node-level accuracy predicted by the node GNN.
edge_acc: Edge-level accuracy predicted by the edge GNN.
node_pred (optional): Predicted node labels. Only returned when return_pred is True.
"""
model.eval()
node_ys, node_preds, edge_ys, edge_preds = [], [], [], []
batches, edge_batches = [], []
for data in dataloader:
data = data.to(device)
batches.append(data.batch)
edge_batches.append(data.batch[data.edge_index[0]])
node_ys.append(data.y)
edge_ys.append(data.edge_labels)
node_logit, edge_logit = model(data)
node_preds.append(torch.max(node_logit, dim=-1)[1])
edge_preds.append(torch.max(edge_logit, dim=-1)[1])
node_y, node_pred, edge_y, edge_pred, batch, edge_batch = map(lambda x: torch.cat(x, dim=0), (node_ys, node_preds, edge_ys, edge_preds, batches, edge_batches))
node_acc = _compute_accuracy(args, node_pred, node_y, batch)
edge_acc = _compute_accuracy(args, edge_pred, edge_y, edge_batch)
if return_pred:
return node_acc, edge_acc, node_pred
else:
return node_acc, edge_acc
@torch.no_grad()
def test_spn(args: Namespace, dataloader: DataLoader, model: nn.Module, device: torch.device, return_pred: bool = False):
"""
Predict node and edge labels jointly with SPNs and calculate accuracies.
Args:
args: Arguments from the command line. See config.py.
dataloader: DataLoader for the training set.
model: The model to be trained.
device: The device to be used.
return_pred: Whether to return the node label predictions.
Returns:
node_acc: Node-level accuracy predicted by SPN.
edge_acc: Edge-level accuracy predicted by SPN.
node_pred (optional): Predicted node labels. Only returned when return_pred is True.
"""
model.eval()
y_ls, y_e_ls, p_s_ls, p_st_ls = [], [], [], []
batches, edge_batches = [], []
for data in dataloader:
data = data.to(device)
batches.append(data.batch)
edge_batches.append(data.batch[data.edge_index[0]])
pred_node, pred_edge = get_potential(args, data, model, dataloader.dataset.num_classes)
p_s, p_st = max_product_bp(args, pred_node.detach(), pred_edge.detach(), data.edge_index, data.edge_index_reversed, device, dataloader.dataset.num_classes)
y = data.y
p_s_ls.append(p_s)
p_st_ls.append(p_st)
y_ls.append(y)
y_e_ls.append(data.edge_labels)
p_s = torch.cat(p_s_ls, dim=0)
p_st = torch.cat(p_st_ls, dim=0)
y = torch.cat(y_ls, dim=0)
y_e = torch.cat(y_e_ls, dim=0)
batch = torch.cat(batches, dim=0)
edge_batch = torch.cat(edge_batches, dim=0)
# calculate node predictions and accuracy
_, y_pred = p_s.max(-1)
acc_n = _compute_accuracy(args, y_pred, y, batch)
# calculate edge predictions and accuracy
_, y_pred_e = p_st.view(-1, dataloader.dataset.num_classes ** 2).max(-1)
acc_e = _compute_accuracy(args, y_pred_e, y_e, edge_batch)
if return_pred:
return acc_n, acc_e, y_pred
else:
return acc_n, acc_e