Skip to content

Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

License

Notifications You must be signed in to change notification settings

DeepVoltaire/AutoAugment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoAugment - Learning Augmentation Policies from Data

Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by AutoAugment, described in this Google AI Blogpost.

Update July 13th, 2018: Wrote a Blogpost about AutoAugment and Double Transfer Learning.

Tested with Python 3.6. Needs pillow>=5.0.0

Examples of the best ImageNet Policy


Example

from autoaugment import ImageNetPolicy
image = PIL.Image.open(path)
policy = ImageNetPolicy()
transformed = policy(image)

To see examples of all operations and magnitudes applied to images, take a look at AutoAugment_Exploration.ipynb.

Example as a PyTorch Transform - ImageNet

from autoaugment import ImageNetPolicy
data = ImageFolder(rootdir, transform=transforms.Compose(
                        [transforms.RandomResizedCrop(224), 
                         transforms.RandomHorizontalFlip(), ImageNetPolicy(), 
                         transforms.ToTensor(), transforms.Normalize(...)]))
loader = DataLoader(data, ...)

Example as a PyTorch Transform - CIFAR10

from autoaugment import CIFAR10Policy
data = ImageFolder(rootdir, transform=transforms.Compose(
                        [transforms.RandomCrop(32, padding=4, fill=128), # fill parameter needs torchvision installed from source
                         transforms.RandomHorizontalFlip(), CIFAR10Policy(), 
			 transforms.ToTensor(), 
                         Cutout(n_holes=1, length=16), # (https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py)
                         transforms.Normalize(...)]))
loader = DataLoader(data, ...)

Example as a PyTorch Transform - SVHN

from autoaugment import SVHNPolicy
data = ImageFolder(rootdir, transform=transforms.Compose(
                        [SVHNPolicy(), 
			 transforms.ToTensor(), 
                         Cutout(n_holes=1, length=20), # (https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py)
                         transforms.Normalize(...)]))
loader = DataLoader(data, ...)

Results with AutoAugment

Generalizable Data Augmentations

Finally, we show that policies found on one task can generalize well across different models and datasets. For example, the policy found on ImageNet leads to significant improvements on a variety of FGVC datasets. Even on datasets for which fine-tuning weights pre-trained on ImageNet does not help significantly [26], e.g. Stanford Cars [27] and FGVC Aircraft [28], training with the ImageNet policy reduces test set error by 1.16% and 1.76%, respectively. This result suggests that transferring data augmentation policies offers an alternative method for transfer learning.

CIFAR 10

CIFAR10 Results

CIFAR 100

CIFAR10 Results

ImageNet

ImageNet Results

SVHN

SVHN Results

Fine Grained Visual Classification Datasets

SVHN Results

About

Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published