Skip to content

DemisEom/RNNT-pytorch

Repository files navigation

RNNT-pytorch

Implementation of RNN-Transducer

Installation

  1. pip isntall -r requirments.txt
  2. Install torch
  3. Install rnnt loss
  4. install torch audio

rnnt loss hawk aron's implementation

## ref hawk aron's read me
git clone https://github.com/HawkAaron/warp-transducer
cd warp-transducer
mkdir build; cd build
cmake ..
make

cd pytorch_binding
python setup.py install

Train Decoder (optional)

python train_decoder_LM.py --train-manifest ./data/LM/train_LM.txt

Train Network

python train.py --val-manifest {your val manifest csv path} --train-manifest {your train manifest csv path

Results

Data Parameter Setting WER CER
an4 3encoder, 2decoder, 250 hidden size, 0.2 drop out 25.06 19.2
an4 +augmentation + batch normalization 18.11 13.72
an4 +specAugment 12.14 10.4

tensorboard

Things To Do

  1. 입력으로 사용하는 특징들을 spectrogram, filter bank, word piece 종류 늘리기.
  2. 네트워크 구조 다듬기.
  3. LM 선학습 후 사용 가능하게 하기.

References

  1. EXPLORING RNN-TRANSDUCER FOR CHINESE SPEECH RECOGNITION
  2. speech, RNNT Loss by awni
  3. E2E-ASR by hawk aron
  4. EXPLORING ARCHITECTURES, DATA AND UNITS FOR STREAMING END-TO-END SPEECH RECOGNITION WITH RNN-TRANSDUCER
  5. A Comparison of Sequence-to-Sequence Models for Speech Recognition

About

Implementaion RNN tranceducer

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages