Skip to content

Commit

Permalink
Merge pull request #63 from 1ssb/patch-1
Browse files Browse the repository at this point in the history
Update depth_to_pointcloud.py
  • Loading branch information
LiheYoung authored Jul 7, 2024
2 parents d984f98 + 82782f5 commit 31dc977
Showing 1 changed file with 73 additions and 42 deletions.
115 changes: 73 additions & 42 deletions metric_depth/depth_to_pointcloud.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,23 @@
# Born out of Depth Anything V1 Issue 36
# Make sure you have the necessary libraries
# Code by @1ssb
"""
Born out of Depth Anything V1 Issue 36
Make sure you have the necessary libraries installed.
Code by @1ssb
This script processes a set of images to generate depth maps and corresponding point clouds.
The resulting point clouds are saved in the specified output directory.
Usage:
python script.py --encoder vitl --load-from path_to_model --max-depth 20 --img-path path_to_images --outdir output_directory --focal-length-x 470.4 --focal-length-y 470.4
Arguments:
--encoder: Model encoder to use. Choices are ['vits', 'vitb', 'vitl', 'vitg'].
--load-from: Path to the pre-trained model weights.
--max-depth: Maximum depth value for the depth map.
--img-path: Path to the input image or directory containing images.
--outdir: Directory to save the output point clouds.
--focal-length-x: Focal length along the x-axis.
--focal-length-y: Focal length along the y-axis.
"""

import argparse
import cv2
Expand All @@ -14,38 +31,43 @@
from depth_anything_v2.dpt import DepthAnythingV2


if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg'])
parser.add_argument('--load-from', default='', type=str)
parser.add_argument('--max-depth', default=20, type=float)

parser.add_argument('--img-path', type=str)
parser.add_argument('--outdir', type=str, default='./vis_pointcloud')

def main():
# Parse command-line arguments
parser = argparse.ArgumentParser(description='Generate depth maps and point clouds from images.')
parser.add_argument('--encoder', default='vitl', type=str, choices=['vits', 'vitb', 'vitl', 'vitg'],
help='Model encoder to use.')
parser.add_argument('--load-from', default='', type=str, required=True,
help='Path to the pre-trained model weights.')
parser.add_argument('--max-depth', default=20, type=float,
help='Maximum depth value for the depth map.')
parser.add_argument('--img-path', type=str, required=True,
help='Path to the input image or directory containing images.')
parser.add_argument('--outdir', type=str, default='./vis_pointcloud',
help='Directory to save the output point clouds.')
parser.add_argument('--focal-length-x', default=470.4, type=float,
help='Focal length along the x-axis.')
parser.add_argument('--focal-length-y', default=470.4, type=float,
help='Focal length along the y-axis.')

args = parser.parse_args()

# Global settings
FL = 715.0873
FY = 784 * 0.6
FX = 784 * 0.6
NYU_DATA = False
FINAL_HEIGHT = 518
FINAL_WIDTH = 518


# Determine the device to use (CUDA, MPS, or CPU)
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'


# Model configuration based on the chosen encoder
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}


# Initialize the DepthAnythingV2 model with the specified configuration
depth_anything = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
depth_anything.load_state_dict(torch.load(args.load_from, map_location='cpu'))
depth_anything = depth_anything.to(DEVICE).eval()


# Get the list of image files to process
if os.path.isfile(args.img_path):
if args.img_path.endswith('txt'):
with open(args.img_path, 'r') as f:
Expand All @@ -54,30 +76,39 @@
filenames = [args.img_path]
else:
filenames = glob.glob(os.path.join(args.img_path, '**/*'), recursive=True)


# Create the output directory if it doesn't exist
os.makedirs(args.outdir, exist_ok=True)


# Process each image file
for k, filename in enumerate(filenames):
print(f'Progress {k+1}/{len(filenames)}: {filename}')

print(f'Processing {k+1}/{len(filenames)}: {filename}')

# Load the image
color_image = Image.open(filename).convert('RGB')

width, height = color_image.size

# Read the image using OpenCV
image = cv2.imread(filename)
pred = depth_anything.infer_image(image, FINAL_HEIGHT)

# Resize color image and depth to final size
resized_color_image = color_image.resize((FINAL_WIDTH, FINAL_HEIGHT), Image.LANCZOS)
resized_pred = Image.fromarray(pred).resize((FINAL_WIDTH, FINAL_HEIGHT), Image.NEAREST)

focal_length_x, focal_length_y = (FX, FY) if not NYU_DATA else (FL, FL)
x, y = np.meshgrid(np.arange(FINAL_WIDTH), np.arange(FINAL_HEIGHT))
x = (x - FINAL_WIDTH / 2) / focal_length_x
y = (y - FINAL_HEIGHT / 2) / focal_length_y
pred = depth_anything.infer_image(image, height)

# Resize depth prediction to match the original image size
resized_pred = Image.fromarray(pred).resize((width, height), Image.NEAREST)

# Generate mesh grid and calculate point cloud coordinates
x, y = np.meshgrid(np.arange(width), np.arange(height))
x = (x - width / 2) / args.focal_length_x
y = (y - height / 2) / args.focal_length_y
z = np.array(resized_pred)
points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3)
colors = np.array(resized_color_image).reshape(-1, 3) / 255.0

colors = np.array(color_image).reshape(-1, 3) / 255.0

# Create the point cloud and save it to the output directory
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors)
o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd)
o3d.io.write_point_cloud(os.path.join(args.outdir, os.path.splitext(os.path.basename(filename))[0] + ".ply"), pcd)


if __name__ == '__main__':
main()

0 comments on commit 31dc977

Please sign in to comment.