Skip to content

Commit

Permalink
Updated Readme
Browse files Browse the repository at this point in the history
  • Loading branch information
Devasy23 committed Nov 28, 2024
1 parent bb8ba10 commit 02178cf
Showing 1 changed file with 87 additions and 123 deletions.
210 changes: 87 additions & 123 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

## Description

DeepTuner is an open source Python package for fine-tuning computer vision (CV) based deep models using Siamese architecture with a triplet loss function. The package supports various model backbones and provides tools for data preprocessing and evaluation metrics.
DeepTuner is an open source Python package for fine-tuning computer vision (CV) based deep models. It supports multiple architectures including Siamese Networks with triplet loss and ArcFace with additive angular margin loss. The package provides various model backbones, data preprocessing tools, and evaluation metrics.

## Installation

Expand All @@ -14,156 +14,120 @@ pip install DeepTuner

## Usage

### Fine-tuning Models with Siamese Architecture and Triplet Loss
### Training with ArcFace

Here is an example of how to use the package for fine-tuning models with Siamese architecture and triplet loss:
DeepTuner now supports ArcFace training with additive angular margin loss, which is particularly effective for face recognition tasks:

```python
import os
import json
from sklearn.model_selection import train_test_split
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import Mean
from tensorflow.keras.callbacks import ReduceLROnPlateau, EarlyStopping, ModelCheckpoint
from wandb.integration.keras import WandbMetricsLogger
import wandb

from deeptuner.backbones.resnet import ResNetBackbone
from deeptuner.architectures.siamese import SiameseArchitecture
from deeptuner.losses.triplet_loss import triplet_loss
from deeptuner.datagenerators.triplet_data_generator import TripletDataGenerator
from deeptuner.callbacks.finetune_callback import FineTuneCallback

# Load configuration from JSON file
with open('config.json', 'r') as config_file:
config = json.load(config_file)

data_dir = config['data_dir']
image_size = tuple(config['image_size'])
batch_size = config['batch_size']
margin = config['margin']
epochs = config['epochs']
initial_epoch = config['initial_epoch']
learning_rate = config['learning_rate']
patience = config['patience']
unfreeze_layers = config['unfreeze_layers']

# Initialize W&B
wandb.init(project=config['project_name'], config=config)

# Load and preprocess the data
image_paths = []
labels = []

for label in os.listdir(data_dir):
label_dir = os.path.join(data_dir, label)
if os.path.isdir(label_dir):
for image_name in os.listdir(label_dir):
image_paths.append(os.path.join(label_dir, image_name))
labels.append(label)

# Debugging output
print(f"Found {len(image_paths)} images in {len(set(labels))} classes")

# Split the data into training and validation sets
train_paths, val_paths, train_labels, val_labels = train_test_split(
image_paths, labels, test_size=0.2, stratify=labels, random_state=42
)

# Check if the splits are non-empty
print(f"Training on {len(train_paths)} images")
print(f"Validating on {len(val_paths)} images")
from deeptuner.losses.arcface_loss import ArcFaceModel, arcface_loss
from deeptuner.datagenerators.arcface_generator import ArcFaceDataGenerator

# Create data generators
num_classes = len(set(labels))
train_generator = TripletDataGenerator(train_paths, train_labels, batch_size, image_size, num_classes)
val_generator = TripletDataGenerator(val_paths, val_labels, batch_size, image_size, num_classes)

# Check if the generators have data
assert len(train_generator) > 0, "Training generator is empty!"
assert len(val_generator) > 0, "Validation generator is empty!"

# Create the embedding model and freeze layers
backbone = ResNetBackbone(input_shape=image_size + (3,))
embedding_model = backbone.create_model()
train_generator = ArcFaceDataGenerator(
data_dir='path/to/train/data',
batch_size=32,
image_size=(224, 224),
augment=True
)

# Freeze all layers initially
for layer in embedding_model.layers:
layer.trainable = False
# Unfreeze last few layers
for layer in embedding_model.layers[-unfreeze_layers:]:
layer.trainable = True
# Create backbone and ArcFace model
backbone = ResNetBackbone(input_shape=(224, 224, 3))
backbone_model = backbone.create_model()

# Create the siamese network
siamese_architecture = SiameseArchitecture(input_shape=image_size + (3,), embedding_model=embedding_model)
siamese_network = siamese_architecture.create_siamese_network()
model = ArcFaceModel(
backbone=backbone_model,
num_classes=num_classes,
embedding_dim=512,
margin=0.5,
scale=64.0
)

# Initialize the Siamese model
loss_tracker = Mean(name="loss")
siamese_model = SiameseModel(siamese_network, margin, loss_tracker)

# Set up callbacks
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, min_lr=1e-7, verbose=1)
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True, verbose=1)
model_checkpoint = ModelCheckpoint(
"models/best_siamese_model.weights.h5",
save_best_only=True,
save_weights_only=True,
monitor='val_loss',
verbose=1
# Compile and train
model.compile(
optimizer='adam',
loss=arcface_loss(),
metrics=['accuracy']
)
embedding_checkpoint = ModelCheckpoint(
"models/best_embedding_model.weights.h5",
save_best_only=True,
save_weights_only=True,
monitor='val_loss',
verbose=1

model.fit(
train_generator.create_dataset(is_training=True),
epochs=50
)
fine_tune_callback = FineTuneCallback(embedding_model, patience=patience, unfreeze_layers=unfreeze_layers)
```

# Create models directory if it doesn't exist
os.makedirs('models', exist_ok=True)
### Fine-tuning Models with Siamese Architecture and Triplet Loss

# Compile the model
siamese_model.compile(optimizer=Adam(learning_rate=learning_rate), loss=triplet_loss(margin=margin))
For similarity learning tasks, you can use the Siamese architecture with triplet loss:

# Train the model
history = siamese_model.fit(
train_generator,
validation_data=val_generator,
epochs=epochs,
initial_epoch=initial_epoch,
callbacks=[
reduce_lr,
early_stopping,
model_checkpoint,
embedding_checkpoint,
fine_tune_callback,
WandbMetricsLogger(log_freq=5)
]
```python
from deeptuner.backbones.resnet import ResNetBackbone
from deeptuner.architectures.siamese import SiameseArchitecture
from deeptuner.losses.triplet_loss import triplet_loss
from deeptuner.datagenerators.triplet_data_generator import TripletDataGenerator

# Create data generators
train_generator = TripletDataGenerator(
train_paths, train_labels,
batch_size=32,
image_size=(224, 224),
num_classes=num_classes
)

# Save the final embedding model
embedding_model.save('models/final_embedding_model.h5')
# Create Siamese network
backbone = ResNetBackbone(input_shape=(224, 224, 3))
embedding_model = backbone.create_model()
siamese_architecture = SiameseArchitecture(
input_shape=(224, 224, 3),
embedding_model=embedding_model
)
siamese_network = siamese_architecture.create_siamese_network()

# Train the model
model.compile(optimizer='adam', loss=triplet_loss(margin=0.5))
model.fit(train_generator, epochs=50)
```

### Using Configuration Files
## Features

- Multiple architectures:
- Siamese Networks with triplet loss
- ArcFace with additive angular margin loss
- Various backbone models:
- ResNet
- EfficientNet
- MobileNet
- Specialized data generators:
- TripletDataGenerator for Siamese networks
- ArcFaceDataGenerator for ArcFace training
- Training utilities:
- Fine-tuning callbacks
- Learning rate scheduling
- Wandb integration for experiment tracking

To make it easier to experiment with different hyperparameter settings, you can use a configuration file (e.g., JSON) to store hyperparameters. Here is an example of a configuration file (`config.json`):
## Configuration

You can use a configuration file (e.g., JSON) to store hyperparameters. Example config for ArcFace:

```json
{
"data_dir": "path/to/your/dataset",
"data_dir": "path/to/data",
"image_size": [224, 224],
"batch_size": 32,
"margin": 1.0,
"epochs": 50,
"initial_epoch": 0,
"learning_rate": 0.001,
"patience": 5,
"unfreeze_layers": 10,
"project_name": "DeepTuner"
"embedding_dim": 512,
"arcface_margin": 0.5,
"arcface_scale": 64.0
}
```

You can then load this configuration file in your code as shown in the usage example above.
## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## License

This project is licensed under the MIT License - see the LICENSE file for details.

0 comments on commit 02178cf

Please sign in to comment.