Skip to content

Single-class image classification of Distilling Knowledge by Mimicking Features.

Notifications You must be signed in to change notification settings

DoctorKey/LSHFM.singleclassification

Repository files navigation

LSHFM.classification

PWC PWC PWC

This is the PyTorch source code for Distilling Knowledge by Mimicking Features. We provide all codes for three tasks.

Dependence

  • python3
  • pytorch 1.7.1
  • torchvision 0.8.2

Prepare the dataset

Please prepare the COCO and VOC datasets by youself. Then you need to check and edit the get_data_path function in src/dataset/coco_utils.py and src/dataset/voc_utils.py.

CIFAR-100

Teacher:

  • wrn_40_2
  • resnet56
  • resnet110
  • resnet32x4
  • vgg13
  • ResNet50

Student:

  • wrn_16_2
  • wrn_40_1
  • resnet20
  • resnet32
  • resnet8x4
  • vgg8
  • MobileNetV2
  • ShffleNetV1
  • ShffleNetV2

Train vanilla teacher and student

Train the teacher:

python train_vanilla.py --model [teacher network] --gpus 0
e.g.
python train_vanilla.py --model resnet56 --gpus 0

Train the student:

python train_vanilla.py --model [student network] --gpus 0
e.g.
python train_vanilla.py --model wrn_16_2 --gpus 0

Feature mimicking & knowledge distillation

Please use the below command to run experiments:

python train_student.py --model_s [student network] --path_t [path to the teacher] --gpus 0
e.g.
python train_student.py --model_s wrn_16_2 --path_t save/models/wrn_40_2_vanilla/ckpt_epoch_240.pth --gpus 0

Imagenet

Please use the below command to run experiments:

python imagenet_lsh.py /mnt/ramdisk/ImageNet --gpus 0,1 -a ResNet18 --teacher-arch ResNet34 

Citing this repository

If you find this code useful in your research, please consider citing us:

@article{LSHFM,
  title={Distilling knowledge by mimicking features},
  author={Wang, Guo-Hua and Ge, Yifan and Wu, Jianxin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2021},
}

Acknowledgement

About

Single-class image classification of Distilling Knowledge by Mimicking Features.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages