forked from llgcode/draw2d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix.go
222 lines (190 loc) · 6.87 KB
/
matrix.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright 2010 The draw2d Authors. All rights reserved.
// created: 21/11/2010 by Laurent Le Goff
package draw2d
import (
"math"
)
// Matrix represents an affine transformation
type Matrix [6]float64
const (
epsilon = 1e-6
)
// Determinant compute the determinant of the matrix
func (tr Matrix) Determinant() float64 {
return tr[0]*tr[3] - tr[1]*tr[2]
}
// Transform applies the transformation matrix to points. It modify the points passed in parameter.
func (tr Matrix) Transform(points []float64) {
for i, j := 0, 1; j < len(points); i, j = i+2, j+2 {
x := points[i]
y := points[j]
points[i] = x*tr[0] + y*tr[2] + tr[4]
points[j] = x*tr[1] + y*tr[3] + tr[5]
}
}
// TransformPoint applies the transformation matrix to point. It returns the point the transformed point.
func (tr Matrix) TransformPoint(x, y float64) (xres, yres float64) {
xres = x*tr[0] + y*tr[2] + tr[4]
yres = x*tr[1] + y*tr[3] + tr[5]
return xres, yres
}
func minMax(x, y float64) (min, max float64) {
if x > y {
return y, x
}
return x, y
}
// Transform applies the transformation matrix to the rectangle represented by the min and the max point of the rectangle
func (tr Matrix) TransformRectangle(x0, y0, x2, y2 float64) (nx0, ny0, nx2, ny2 float64) {
points := []float64{x0, y0, x2, y0, x2, y2, x0, y2}
tr.Transform(points)
points[0], points[2] = minMax(points[0], points[2])
points[4], points[6] = minMax(points[4], points[6])
points[1], points[3] = minMax(points[1], points[3])
points[5], points[7] = minMax(points[5], points[7])
nx0 = math.Min(points[0], points[4])
ny0 = math.Min(points[1], points[5])
nx2 = math.Max(points[2], points[6])
ny2 = math.Max(points[3], points[7])
return nx0, ny0, nx2, ny2
}
// InverseTransform applies the transformation inverse matrix to the rectangle represented by the min and the max point of the rectangle
func (tr Matrix) InverseTransform(points []float64) {
d := tr.Determinant() // matrix determinant
for i, j := 0, 1; j < len(points); i, j = i+2, j+2 {
x := points[i]
y := points[j]
points[i] = ((x-tr[4])*tr[3] - (y-tr[5])*tr[2]) / d
points[j] = ((y-tr[5])*tr[0] - (x-tr[4])*tr[1]) / d
}
}
// InverseTransformPoint applies the transformation inverse matrix to point. It returns the point the transformed point.
func (tr Matrix) InverseTransformPoint(x, y float64) (xres, yres float64) {
d := tr.Determinant() // matrix determinant
xres = ((x-tr[4])*tr[3] - (y-tr[5])*tr[2]) / d
yres = ((y-tr[5])*tr[0] - (x-tr[4])*tr[1]) / d
return xres, yres
}
// VectorTransform applies the transformation matrix to points without using the translation parameter of the affine matrix.
// It modify the points passed in parameter.
func (tr Matrix) VectorTransform(points []float64) {
for i, j := 0, 1; j < len(points); i, j = i+2, j+2 {
x := points[i]
y := points[j]
points[i] = x*tr[0] + y*tr[2]
points[j] = x*tr[1] + y*tr[3]
}
}
// NewIdentityMatrix creates an identity transformation matrix.
func NewIdentityMatrix() Matrix {
return Matrix{1, 0, 0, 1, 0, 0}
}
// NewTranslationMatrix creates a transformation matrix with a translation tx and ty translation parameter
func NewTranslationMatrix(tx, ty float64) Matrix {
return Matrix{1, 0, 0, 1, tx, ty}
}
// NewScaleMatrix creates a transformation matrix with a sx, sy scale factor
func NewScaleMatrix(sx, sy float64) Matrix {
return Matrix{sx, 0, 0, sy, 0, 0}
}
// NewRotationMatrix creates a rotation transformation matrix. angle is in radian
func NewRotationMatrix(angle float64) Matrix {
c := math.Cos(angle)
s := math.Sin(angle)
return Matrix{c, s, -s, c, 0, 0}
}
// NewMatrixFromRects creates a transformation matrix, combining a scale and a translation, that transform rectangle1 into rectangle2.
func NewMatrixFromRects(rectangle1, rectangle2 [4]float64) Matrix {
xScale := (rectangle2[2] - rectangle2[0]) / (rectangle1[2] - rectangle1[0])
yScale := (rectangle2[3] - rectangle2[1]) / (rectangle1[3] - rectangle1[1])
xOffset := rectangle2[0] - (rectangle1[0] * xScale)
yOffset := rectangle2[1] - (rectangle1[1] * yScale)
return Matrix{xScale, 0, 0, yScale, xOffset, yOffset}
}
// Inverse computes the inverse matrix
func (tr *Matrix) Inverse() {
d := tr.Determinant() // matrix determinant
tr0, tr1, tr2, tr3, tr4, tr5 := tr[0], tr[1], tr[2], tr[3], tr[4], tr[5]
tr[0] = tr3 / d
tr[1] = -tr1 / d
tr[2] = -tr2 / d
tr[3] = tr0 / d
tr[4] = (tr2*tr5 - tr3*tr4) / d
tr[5] = (tr1*tr4 - tr0*tr5) / d
}
func (tr Matrix) Copy() Matrix {
var result Matrix
copy(result[:], tr[:])
return result
}
// Compose multiplies trToConcat x tr
func (tr *Matrix) Compose(trToCompose Matrix) {
tr0, tr1, tr2, tr3, tr4, tr5 := tr[0], tr[1], tr[2], tr[3], tr[4], tr[5]
tr[0] = trToCompose[0]*tr0 + trToCompose[1]*tr2
tr[1] = trToCompose[1]*tr3 + trToCompose[0]*tr1
tr[2] = trToCompose[2]*tr0 + trToCompose[3]*tr2
tr[3] = trToCompose[3]*tr3 + trToCompose[2]*tr1
tr[4] = trToCompose[4]*tr0 + trToCompose[5]*tr2 + tr4
tr[5] = trToCompose[5]*tr3 + trToCompose[4]*tr1 + tr5
}
// Scale adds a scale to the matrix
func (tr *Matrix) Scale(sx, sy float64) {
tr[0] = sx * tr[0]
tr[1] = sx * tr[1]
tr[2] = sy * tr[2]
tr[3] = sy * tr[3]
}
// Translate adds a translation to the matrix
func (tr *Matrix) Translate(tx, ty float64) {
tr[4] = tx*tr[0] + ty*tr[2] + tr[4]
tr[5] = ty*tr[3] + tx*tr[1] + tr[5]
}
// Rotate adds a rotation to the matrix. angle is in radian
func (tr *Matrix) Rotate(angle float64) {
c := math.Cos(angle)
s := math.Sin(angle)
t0 := c*tr[0] + s*tr[2]
t1 := s*tr[3] + c*tr[1]
t2 := c*tr[2] - s*tr[0]
t3 := c*tr[3] - s*tr[1]
tr[0] = t0
tr[1] = t1
tr[2] = t2
tr[3] = t3
}
// GetTranslation
func (tr Matrix) GetTranslation() (x, y float64) {
return tr[4], tr[5]
}
// GetScaling
func (tr Matrix) GetScaling() (x, y float64) {
return tr[0], tr[3]
}
// GetScale computes a scale for the matrix
func (tr Matrix) GetScale() float64 {
x := 0.707106781*tr[0] + 0.707106781*tr[1]
y := 0.707106781*tr[2] + 0.707106781*tr[3]
return math.Sqrt(x*x + y*y)
}
// ******************** Testing ********************
// Equals tests if a two transformation are equal. A tolerance is applied when comparing matrix elements.
func (tr1 Matrix) Equals(tr2 Matrix) bool {
for i := 0; i < 6; i = i + 1 {
if !fequals(tr1[i], tr2[i]) {
return false
}
}
return true
}
// IsIdentity tests if a transformation is the identity transformation. A tolerance is applied when comparing matrix elements.
func (tr Matrix) IsIdentity() bool {
return fequals(tr[4], 0) && fequals(tr[5], 0) && tr.IsTranslation()
}
// IsTranslation tests if a transformation is is a pure translation. A tolerance is applied when comparing matrix elements.
func (tr Matrix) IsTranslation() bool {
return fequals(tr[0], 1) && fequals(tr[1], 0) && fequals(tr[2], 0) && fequals(tr[3], 1)
}
// fequals compares two floats. return true if the distance between the two floats is less than epsilon, false otherwise
func fequals(float1, float2 float64) bool {
return math.Abs(float1-float2) <= epsilon
}