The study of shrub detection with Google Earth imagery was based on Inception model and ResNet-152 model using Keras(as front-end) and Tensorflow(as back-end).
Due to space limitation in Github, the dataset and codes are provided via Google Drive: https://drive.google.com/drive/u/0/folders/1IfyivDERnNj-NW6q6CCam47zca-n0p6e
############ INCEPTION v3 ############
Inceptionv3 1_Dataset classes (database to train with class images in folders. e.g. “Z” for vegetation and “S”
for soil)
image (image to classification test. e.g. “ZoneTest.jpg”) 2_Train inception (Model pretrained weights inception v3 ) Train_models (Model retrained weights inception v3 + new classes chips “Z” and “S” ) 3_Label (3 options) individual (show probabilities in one test image like images in 1_Dataset/classes/Z/
“label_image_new.py” Tensorflow 1.0 or greater)
preprocessing (show probabilities in bounding box for extent test image like
“ZoneTest.jpg”. Requires OpenCV2)
heatmap (show heatmap of extent test image like “ZoneTest.jpg”)
Pillow Tensorflow >= 1.0 Opencv + numpy python 2.7
python 2_Train/retrain_au-scale.py --bottleneck_dir=2_Train/Train_models/bottlenecks -- how_many_training_steps 1000 --model_dir=inception -- output_graph=2_Train/Train_models/retrained_graph.pb -- output_labels=Train/Train_models/retrained_labels.txt --image_dir=1_Dataset/classes
python 3_Label/individual/label_image_new.py 1_Da taset/test/Z/Z1.jpg
python 3_Label/preprocessing/preprocessing.py
1-create_csv_from_slidingwindow.py 2-heatmap_from_csv.py
########### RESNET 152 ###########
ResNet152 1_Dataset Train Z S Test Z S
Keras >= 2 https://keras.io/ Tensorflow >= 1.0 https://www.tensorflow.org/ Opencv + numpy python 2.7 #ResNet model train and validate test images. python resnet_152.py --image_dir=1_Dataset/ --imgs_rows=224 --imgs_cols=224 -- batch_size=8 --epochs=10
Corresponding e.guirado@ual.es and siham@ugr.es
The study of shrub detection with Google Earth imagery was based in Google developers for the Inception model and adaptation of ResNet-152 model used by Keras and Tensorflow.