-
Notifications
You must be signed in to change notification settings - Fork 9
Analogy to PyTorch
Zhang Yanbo edited this page Oct 26, 2022
·
2 revisions
Module | PyTorch | INNLab |
---|---|---|
Sequential | nn.Sequential(*modules) |
INN.Sequential(*modules) |
Module | PyTorch | INNLab |
---|---|---|
Linear vector operator | nn.Linear(dim, dim) |
INN.Linear(dim) |
1-d 1x1 CNN | nn.Conv1d(channel, channel, kernel_size=1) |
INN.Linear1d(channel) |
EUNN (efficient unitary neural network) | None | INN.EUNN(dim) |
Module | PyTorch | INNLab |
---|---|---|
Non-linear vector operator |
nn.Linear(dim, dim) + non-linear |
INN.Nonlinear(dim) |
Non-linear 1-d CNN |
nn.Conv1d(channel, channel, kernel_size) + non-linear |
INN.Conv1d(channel, kernel_size) |
Non-linear 2-d CNN |
nn.Conv2d(channel, channel, kernel_size) + non-linear |
INN.Conv2d(channel, kernel_size) |
Module | PyTorch | INNLab |
---|---|---|
1d Batch Normalization | nn.BatchNorm1d(num_features) |
INN.BatchNorm1d(num_feature) |
Module | PyTorch | INNLab |
---|---|---|
Resize | Included in nn.Linear or nn.Conv
|
INN.ResizeFeatures(feature_in, feature_out) |