Skip to content

A python automatic differentiation library. Implement forward mode, reverse mode, and root-finding.

License

Notifications You must be signed in to change notification settings

ELSuitorHarvard/cs107-FinalProject

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

codecov

Build Status

Final Project - autodiff Python Package

AC207 Systems Development for Computational Science, Fall 2020

Group Number 7

  • Sehaj Chawla
  • Xin Zeng
  • Yang Xiang
  • Sivananda Rajananda

Overview

Differentiation, the process of finding a derivative, is one of the most fundamental operations in mathematics. Computational techniques of calculating differentiations have broad applications in science and engineering, including numerical solution of ordinary differential equations, optimization and solution of linear systems. Besides, they also have many real-life applications, like edge detection in image processing and safety tests of cars. Symbolic Differentiation and Finite Difference are two ways to numerically compute derivatives. Symbolic Differentiation is precise, but it can lead to inefficient code and can be costly to evaluate. Finite Difference is quick and easy to implement, but it can introduce round-off errors. Automatic Differentiation (AD) handles both of these two problems. It achieves machine precision without costly evaluation, and therefore is widely used.

Our package, autodiff, provides an easy way to calculate derivatives of functions for both scalar and vector inputs. It implements both of forward and reverse mode of automatic differentiation, and also extends to root-finding with Newton's method.

We invite you to use autodiff package and help us improve it!

The link for full documentation is here.

Quick Start

Our package autodiff supports installation via pip. Users can install the package with the following command.

pip install autodiff_AsiaUnionCS107

Below are some simple demos of autodiff package.

  • Forward mode AD

Example 1

>>> from autodiff.ad import AutoDiff
>>> val = 0 # Value to evaluate at
>>> x = AutoDiff(val, name="x") # Create an AD forward mode object with val
>>> f = AutoDiff.sin(2 * x) # function to be evaluate, i.e. f(x) = sin(2x)
>>> print(f.val) # Output the function value
>>> print(f.der) # Output the function derivative
[0.] 
{'x': array([2.])}

Example 2

# Create an AD forward mode object with vector
>>> x = AutoDiff([-1.0, -3.0, -5.0, -7.0, 0.1], name="x") 
# function to evaluate
>>> f = AutoDiff.logistic(AutoDiff.tan(x) + (3 * x ** (-2)) + (2 * x) + 7) 
>>> print(f.val) # Output the function value
>>> print(f.der) # Output the function derivative
[9.98410258e-01 8.13949454e-01 6.22580352e-01 4.05402978e-04 1.00000000e+00]
{'x': array([1.81347563e-002,  4.91036710e-001,  3.40145666e+000, 
             1.53055156e-003, -2.08494059e-130])}
  • Reverse mode AD

Example 1

>>> from autodiff.reverse import Reverse
# create a reverse mode variable that can be used later
>>> x = Reverse(5)  
# create the function y = (sinh(x))^0.5 + 2^x + 7e^x + sin(cos(x))
>>> y = Reverse.sqrt(Reverse.sinh(x)) + 2**x + 7*Reverse.exp(x) + Reverse.sin(Reverse.cos(x)) 
# we want dy/dx this is with respect to x, so we first clear any initialisation that was previously existing using .reset_gradient()
>>> x.reset_gradient()  
# we want dy/dx so we set y.gradient_value to 1
>>> y.gradient_value = 1  
# Finally to get dy/dx calculate get_gradient at x (since we want dy/dx i.e. w.r.t. x)
>>> dy_dx = x.get_gradient()  
# print the gradient value found to console
>>> print(dy_dx)
[1066.30088158]

Example 2

# create a reverse mode variable that can be used later (this time using a numpy array or python list)
>>> x = Reverse([1, 2, 3])  
# create the function y = 2x + x^2
>>> y = 2*x + x**2 
# we want dy/dx this is with respect to x, so we first clear any initialisation that was previously existing using .reset_gradient()
>>> x.reset_gradient()  
# we want dy/dx so we set y.gradient_value to 1
>>> y.gradient_value = 1  
# Finally to get dy/dx calculate get_gradient at x (since we want dy/dx i.e. w.r.t. x)
>>> dy_dx = x.get_gradient()  
# print the gradient value found to console
>>> print(dy_dx)
[4. 6. 8.]
  • Root finding with Newton's method

Example 1

>>> from autodiff.rootfinding import newton_method
>>> def func_one_variable(x: list):
...     # function with one variable
...     f = (x[0]-2)**2
...     return [f]
# Find root of function, print root and trace
>>> root, trace = newton_method(func=func_one_variable, num_of_variables=1, initial_val=[0], 
...                             max_iter=10000, tol=1e-3)
>>> print(f'Root of function: {root}')
>>> print(f'Trace of function: {trace}')
Root of function: [1.96875]
Trace of function: [array([0]), array([1.]), array([1.5]), array([1.75]), array([1.875]), array([1.9375]), array([1.96875])]

Example 2

>>> def func_multi_variables(x: list):
...     # function with multi variables
...     f1 = x[0] + 2
...     f2 = x[0] + x[1]**2 - 2
...     return [f1, f2]
# Find root of function, print root and trace
>>> root, trace = newton_method(func=func_multi_variables, num_of_variables=2, 
...                             initial_val=[0, 1], max_iter=10000, tol=1e-3)
>>> print(f'Root of function: {root}')
>>> print(f'Trace of function: {trace}')
Root of function: [-2.          2.00000009]
Trace of function: [array([0, 1]), array([-2. ,  2.5]), array([-2.  ,  2.05]), array([-2.        ,  2.00060976]), array([-2.        ,  2.00000009])]

We hope you enjoy using our package, and feel free to offer us your advice!

About

A python automatic differentiation library. Implement forward mode, reverse mode, and root-finding.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%