Comparison of Chinese Named Entity Recognition Models between NeuroNER and BertNER
- Word Embedding-BiLSTM-CRF:众多实验表明,该结构属于命名实体识别中最主流的模型,代表的工具有:NeuroNER。它主要由Embedding层(主要有词向量,字向量以及一些额外特征)、双向LSTM层、以及最后的CRF层构成。
- Bert-BiLSTM-CRF:随着Bert语言模型在NLP领域横扫了11项任务的最优结果,将其在中文命名实体识别中Fine-tune必然成为趋势。它主要是使用bert模型替换了原来网络的word2vec部分,从而构成Embedding层,同样使用双向LSTM层以及最后的CRF层来完成序列预测。