Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: update UDPs description and replace broken image links with raw github links #49

Closed
wants to merge 21 commits into from
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
add additional info
  • Loading branch information
HansVRP committed Oct 16, 2024
commit ea7b7a0f6a4b347a4db6b6f54ac9e2dbe1cbadde
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
# Description

Photovoltaic farms (PV farms) mapping is essential for establishing valid policies regarding natural resources management and clean energy. As evidenced by the recent COP28 summit, where almost 120 global leaders pledged to triple the world’s renewable energy capacity before 2030, it is crucial to make these mapping efforts scalable and reproducible. Recently, there were efforts towards the global mapping of PV farms [1], but these were limited to fixed time periods of the analyzed satellite imagery and not openly reproducible.

To resolve this limitation we implemented the detection workflow for mapping solar farms using Sentinel-2 imagery in an openEO process [2].

Open-source data is used to construct the training dataset, leveraging OpenStreetMap (OSM) to gather PV farms polygons across different countries. Different filtering techniques are involved in the creation of the training set, in particular land cover and terrain. To ensure model robustness, we leveraged the temporal resolution of Sentinel-2 L2A data and utilized openEO to create a reusable workflow that simplifies the data access in the cloud, allowing the collection of training samples over Europe efficiently.

This workflow includes preprocessing steps such as cloud masking, gap filling, outliers filtering as well as feature extraction. Alot of effort is put in the best training samples generation, ensuring an optimal starting point for the subsequent steps. After compiling the training dataset, we conducted a statistical discrimination analysis of different pixel-level models to determine the most effective one. Our goal is to compare time-series machine learning (ML) models like InceptionTime, which uses 3D data as input, with tree-based models like Random Forest (RF), which employs 2D data along with feature engineering.

An openEO process graph was constructed for the execution of the inference phase, encapsulating all necessary processes from the preprocessing to the prediction stage. The UDP process for the PV farms mapping is integrated with the ESA Green Transition Information Factory (GTIF, https://gtif.esa.int/), providing the ability for streamlined and FAIR compliant updates of related energy infrastructure mapping efforts.

[1] Kruitwagen, L., et al. A global inventory of photovoltaic solar energy generating units. Nature 598, 604–610 (2021). https://doi.org/10.1038/s41586-021-03957-7

[2] Schramm, M, et al. The openEO API–Harmonising the Use of Earth Observation Cloud Services Using Virtual Data Cube Functionalities. Remote Sens. 2021, 13, 1125. https://doi.org/10.3390/rs13061125

How to cite: Alasawedah, M., Claus, M., Jacob, A., Griffiths, P., Dries, J., and Lippens, S.: Photovoltaic Farms Mapping using openEO Platform, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16841, https://doi.org/10.5194/egusphere-egu24-16841, 2024.

For more information please visit: https://github.com/clausmichele/openEO_photovoltaic/tree/main



# Performance characteristics


## 3-month composite over 400km**2 area

The processing platform reported these usage statistics for the example:

```
Credits: 4
CPU usage: 633,173 cpu-seconds
Wall time: 187 seconds
Input Pixel 20,438 mega-pixel
Max Executor Memory: 1,917 gb
Memory usage: 3.474.032,311 mb-seconds
Network Received: 12.377.132.070 b
```

The relative cost is 0.01 CDSE platform credits per km² for a 3 month input window.

# Examples

Below we overlay a Sentinel2-RGB image with the ML classification, thereby highlighting the detected areas.
![pv_ml_output](pv_ml_output.png)

# Literature references

[1] Kruitwagen, L., et al. A global inventory of photovoltaic solar energy generating units. Nature 598, 604–610 (2021). https://doi.org/10.1038/s41586-021-03957-7

[2] Schramm, M, et al. The openEO API–Harmonising the Use of Earth Observation Cloud Services Using Virtual Data Cube Functionalities. Remote Sens. 2021, 13, 1125. https://doi.org/10.3390/rs13061125

[3]: Alasawedah, M., Claus, M., Jacob, A., Griffiths, P., Dries, J., and Lippens, S.: Photovoltaic Farms Mapping using openEO Platform, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-16841, https://doi.org/10.5194/egusphere-egu24-16841, 2024.


# Known limitations

No effort has been made to optimize the algorithm and its workflow for running it on areas larger than 20x20km**2.


# Known artifacts

A dilatation and errosion mask is aplied to remove small patches in the classified output, which are unlikely PV solar farms. For computation efficiency the kernel size was kept to 3, thereby limiting its effectiveness.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.