1.create a conda virtual environment and activate it:
conda create -n mdmt python=3.8
conda activate mdmt
2.install pytorch and suited mmcv-full, please refer to .
(if you have no idea which version to install, stay with ours: torch 1.10.0+cu113/ torchvision 0.11.1+cu113/ mmcv-full 1.5.0/ mmdet 2.25.1)
3.download the codes and :
cd Multi-Drone-Multi-Object-Detection-and-Tracking-main
pip install -r requirements.txt
cd mmdet
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"
cd ..
pip install -r requirements.txt
pip install -v -e . # or "python setup.py develop"
Multi-Drone-Multi-Object-Detection-and-Tracking-main
data
MDMT
train/ val/ test/
1.Inference MIA-Net:
python ./demo/supplement_MIA.py
import arguments:
--config
config file
--input
input data folder
--xml_dir
input xml file of the groundtruth
--result_dir
the directory to save results, no "/" in the end
--method
the sub-directory used in result_dir, representing different methods
2.Inference MIA-Net(w/o supplementation), MIA-Net(w/ localmatching), MIA-Net(w/ globalmatching), run:
python ./demo/multiDrone_matchingIDallocation-NMS.py
python ./demo/multiDrone_localmatching-NMS.py
python ./demo/multiDrone_globalmatching-NMS.py
1.For tracking perforcement:
python ./demo/eval/json_2_txt.py [--sequences_result] [--output_dir]
python ./demo/eval/txttxt_test.py [--test_file_dir]
2.For MDA score:
python ./demo/eval/mango_eval.py [--sequences_result]
@article{liu2023robust,
title={Robust Multi-Drone Multi-Target Tracking to Resolve Target Occlusion: A Benchmark},
author={Liu, Zhihao and Shang, Yuanyuan and Li, Timing and Chen, Guanlin and Wang, Yu and Hu, Qinghua and Zhu, Pengfei},
journal={IEEE Transactions on Multimedia},
year={2023},
publisher={IEEE}
}