Skip to content

MetricConv: An adaptive convolutional neural network for graphs and meshes

License

Notifications You must be signed in to change notification settings

EidosInteractive/shape-analysis

 
 

Repository files navigation

MetricConv: An adaptive convolutional neural network for graphs and meshes

Getting started

This code was primarily developed with the following libraries on Python 3.6+:

as well as with help from the following libraries: numpy, pandas, matplotlib, tqdm.

Installation

To get started, follow these steps:

1. Clone the repo. Run the following in your console:

git clone https://github.com/eidosmontreal/shape-analysis.git
cd shape_analysis
export PYTHONPATH=$PWD:$PYTHONPATH

2. Install the required dependencies. If you do not wish to install the dependencies separately, you can install them using conda environments via the following command:

$ conda env create -f environment.yml

Note that this excludes PyTorch Geometric. To install PyTorch Geometric we recommend following the steps outlined here.

MetricConv

MetricConv builds metric tensors at each vertex depending on local geometric statistics (refer to picture above). The type of local geometric statistics may be specified via the info parameter upon initialization of a MetricConv module. These metric tensors are used to determine local distances which are then used to construct attention matrices for graph/mesh convolution.


Using MetricConv

After installing the required dependencies, it's easy to start using MetricConv. Initialization of a MetricConv module requires the number of input and output features, and most notably the type of metric to use (chosen among vanilla, tangent, face, feature), specified by the info parameter. A typical forward pass requires the input features, positions, edges, and faces.

We refer the user to the example below.

import torch
import torch.nn.functional as F
import torch.nn as nn

from torch_geometric.io import read_off
from torch_geometric.transforms import FaceToEdge

from models import MetricConv

class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.cnn1 = MetricConv(3,32,info='face')
        self.cnn2 = MetricConv(32,3,info='face')
    def forward(self,feats,verts,edges,faces):
        x = self.cnn1(feats,verts,edges,faces)
        x = F.elu(x)
        out = self.cnn2(x,verts,edges,faces)
        return out

face_to_edge = FaceToEdge(False)
mesh = face_to_edge(read_off('meshes/chair.off'))
net = Net()
features = torch.ones(len(mesh.pos),3)
out = net(features,mesh.pos,mesh.edge_index,mesh.face.t())

Also included in models/ is architectures.py which contains predefined architectures that comprise MetricConv blocks.

Reproducing results

Data

For the correspondence task, we used the Fine Alignment Using Scan Texture (FAUST) dataset.

For the segmentation task, we use the Shape COSEG dataset and Human Body Segmentation.

For details on downloading and setting up the datasets see preprocess/. The data therein is processed to be used in tandem with datasets.py.

Experiments

After installing the data as described above, scripts for training models and reproducing experimental results can be found in experiments/, and should be run from the root directory. For example, to reproduce the reported training results for correspondence on the FAUST dataset, you would have to run:

bash experiments/faust_correspondence_resnet.sh

Tests

One may test basic functionalities of this repo using pytest. In particular, after installing pytest ($ pip install -U pytest ), run the following:

$ pytest tests

Acknowledgement

This library was developped by Bilal Abbasi while he was working at Eidos-Montreal and Eidos-Sherbrooke.

About

MetricConv: An adaptive convolutional neural network for graphs and meshes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.8%
  • Shell 5.2%