Skip to content

Commit

Permalink
Fix betas calculation on VQD and async. cost evaluation (Qiskit#9245
Browse files Browse the repository at this point in the history
)

* Fix betas

* Add async

* Fix seed test

* Fix lint

* Add reno

* Add enumerate

Co-authored-by: Julien Gacon <gaconju@gmail.com>

* Apply suggestions Julien

* Fix lint

Co-authored-by: Julien Gacon <gaconju@gmail.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
  • Loading branch information
3 people authored Dec 6, 2022
1 parent 4d484e5 commit cfca5f4
Show file tree
Hide file tree
Showing 2 changed files with 79 additions and 56 deletions.
62 changes: 36 additions & 26 deletions qiskit/algorithms/eigensolvers/vqd.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,11 +24,12 @@

import numpy as np

from qiskit.algorithms.state_fidelities import BaseStateFidelity
from qiskit.circuit import QuantumCircuit
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.opflow import PauliSumOp
from qiskit.primitives import BaseEstimator
from qiskit.algorithms.state_fidelities import BaseStateFidelity
from qiskit.quantum_info.operators.base_operator import BaseOperator
from qiskit.quantum_info import SparsePauliOp

from ..list_or_dict import ListOrDict
from ..optimizers import Optimizer, Minimizer, OptimizerResult
Expand Down Expand Up @@ -176,12 +177,12 @@ def _check_operator_ansatz(self, operator: BaseOperator | PauliSumOp):
# try to set the number of qubits on the ansatz, if possible
try:
self.ansatz.num_qubits = operator.num_qubits
except AttributeError as ex:
except AttributeError as exc:
raise AlgorithmError(
"The number of qubits of the ansatz does not match the "
"operator, and the ansatz does not allow setting the "
"number of qubits using `num_qubits`."
) from ex
) from exc

@classmethod
def supports_aux_operators(cls) -> bool:
Expand All @@ -205,7 +206,7 @@ def compute_eigenvalues(

# We need to handle the array entries being zero or Optional i.e. having value None
if aux_operators:
zero_op = PauliSumOp.from_list([("I" * self.ansatz.num_qubits, 0)])
zero_op = SparsePauliOp.from_list([("I" * self.ansatz.num_qubits, 0)])

# Convert the None and zero values when aux_operators is a list.
# Drop None and convert zero values when aux_operators is a dict.
Expand All @@ -225,17 +226,21 @@ def compute_eigenvalues(
aux_operators = None

if self.betas is None:

if isinstance(operator, PauliSumOp):
upper_bound = abs(operator.coeff) * sum(
abs(operation.coeff) for operation in operator
)
betas = [upper_bound * 10] * (self.k)
logger.info("beta autoevaluated to %s", betas[0])
else:
operator = operator.coeff * operator.primitive

try:
upper_bound = sum(np.abs(operator.coeffs))

except Exception as exc:
raise NotImplementedError(
r"Beta autoevaluation is only supported for operators"
f"of type PauliSumOp, found {type(operator)}."
)
r"Beta autoevaluation is not supported for operators"
f"of type {type(operator)}."
) from exc

betas = [upper_bound * 10] * (self.k)
logger.info("beta autoevaluated to %s", betas[0])
else:
betas = self.betas

Expand Down Expand Up @@ -334,6 +339,7 @@ def _get_evaluate_energy(
Args:
step: level of energy being calculated. 0 for ground, 1 for first excited state...
operator: The operator whose energy to evaluate.
betas: Beta parameters in the VQD paper.
prev_states: List of optimal circuits from previous rounds of optimization.
Returns:
Expand All @@ -360,27 +366,31 @@ def _get_evaluate_energy(

def evaluate_energy(parameters: np.ndarray) -> np.ndarray | float:

try:
estimator_job = self.estimator.run(
circuits=[self.ansatz], observables=[operator], parameter_values=[parameters]
)
estimator_result = estimator_job.result()
values = estimator_result.values

except Exception as exc:
raise AlgorithmError("The primitive job to evaluate the energy failed!") from exc
estimator_job = self.estimator.run(
circuits=[self.ansatz], observables=[operator], parameter_values=[parameters]
)

total_cost = 0
if step > 1:
# Compute overlap cost
# compute overlap cost
fidelity_job = self.fidelity.run(
[self.ansatz] * (step - 1),
prev_states,
[parameters] * (step - 1),
)

costs = fidelity_job.result().fidelities

for (state, cost) in zip(range(step - 1), costs):
values += np.real(betas[state] * cost)
for state, cost in enumerate(costs):
total_cost += np.real(betas[state] * cost)

try:
estimator_result = estimator_job.result()

except Exception as exc:
raise AlgorithmError("The primitive job to evaluate the energy failed!") from exc

values = estimator_result.values + total_cost

if self.callback is not None:
metadata = estimator_result.metadata
Expand Down
73 changes: 43 additions & 30 deletions test/python/algorithms/eigensolvers/test_vqd.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,28 +26,27 @@
L_BFGS_B,
SLSQP,
)

from qiskit.algorithms.state_fidelities import ComputeUncompute
from qiskit.circuit.library import TwoLocal, RealAmplitudes
from qiskit.opflow import PauliSumOp
from qiskit.primitives import Sampler, Estimator
from qiskit.algorithms.state_fidelities import ComputeUncompute
from qiskit.utils import algorithm_globals
from qiskit.quantum_info import SparsePauliOp
from qiskit.quantum_info.operators import Operator
from qiskit.utils import algorithm_globals


I = PauliSumOp.from_list([("I", 1)]) # pylint: disable=invalid-name
X = PauliSumOp.from_list([("X", 1)]) # pylint: disable=invalid-name
Z = PauliSumOp.from_list([("Z", 1)]) # pylint: disable=invalid-name

H2_PAULI = (
-1.052373245772859 * (I ^ I)
+ 0.39793742484318045 * (I ^ Z)
- 0.39793742484318045 * (Z ^ I)
- 0.01128010425623538 * (Z ^ Z)
+ 0.18093119978423156 * (X ^ X)
H2_SPARSE_PAULI = SparsePauliOp.from_list(
[
("II", -1.052373245772859),
("IZ", 0.39793742484318045),
("ZI", -0.39793742484318045),
("ZZ", -0.01128010425623538),
("XX", 0.18093119978423156),
]
)
H2_OP = Operator(H2_SPARSE_PAULI.to_matrix())

H2_OP = Operator(H2_PAULI.to_matrix())
H2_PAULI = PauliSumOp(H2_SPARSE_PAULI)


@ddt
Expand All @@ -68,11 +67,11 @@ def setUp(self):
self.ry_wavefunction = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")

self.estimator = Estimator()
self.estimator_shots = Estimator(options={"shots": 2048, "seed": self.seed})
self.estimator_shots = Estimator(options={"shots": 1024, "seed": self.seed})
self.fidelity = ComputeUncompute(Sampler())
self.betas = [50, 50]

@data(H2_PAULI, H2_OP)
@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_basic_operator(self, op):
"""Test the VQD without aux_operators."""
wavefunction = self.ryrz_wavefunction
Expand Down Expand Up @@ -116,7 +115,21 @@ def test_full_spectrum(self):
result.eigenvalues.real, self.h2_energy_excited, decimal=2
)

@data(H2_PAULI, H2_OP)
@data(H2_PAULI, H2_SPARSE_PAULI)
def test_beta_autoeval(self, op):
"""Test beta autoevaluation for different operator types."""

with self.assertLogs(level="INFO") as logs:
vqd = VQD(
self.estimator_shots, self.fidelity, self.ryrz_wavefunction, optimizer=L_BFGS_B()
)
_ = vqd.compute_eigenvalues(op)

# the first log message shows the value of beta[0]
beta = float(logs.output[0].split()[-1])
self.assertAlmostEqual(beta, 20.40459399499687, 4)

@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_mismatching_num_qubits(self, op):
"""Ensuring circuit and operator mismatch is caught"""
wavefunction = QuantumCircuit(1)
Expand All @@ -132,7 +145,7 @@ def test_mismatching_num_qubits(self, op):
with self.assertRaises(AlgorithmError):
_ = vqd.compute_eigenvalues(operator=op)

@data(H2_PAULI, H2_OP)
@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_missing_varform_params(self, op):
"""Test specifying a variational form with no parameters raises an error."""
circuit = QuantumCircuit(op.num_qubits)
Expand All @@ -147,7 +160,7 @@ def test_missing_varform_params(self, op):
with self.assertRaises(AlgorithmError):
vqd.compute_eigenvalues(operator=op)

@data(H2_PAULI, H2_OP)
@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_callback(self, op):
"""Test the callback on VQD."""
history = {"eval_count": [], "parameters": [], "mean": [], "metadata": [], "step": []}
Expand All @@ -163,7 +176,7 @@ def store_intermediate_result(eval_count, parameters, mean, metadata, step):
wavefunction = self.ry_wavefunction

vqd = VQD(
estimator=self.estimator,
estimator=self.estimator_shots,
fidelity=self.fidelity,
ansatz=wavefunction,
optimizer=optimizer,
Expand Down Expand Up @@ -191,7 +204,7 @@ def store_intermediate_result(eval_count, parameters, mean, metadata, step):
np.testing.assert_array_almost_equal(history["mean"], ref_mean, decimal=2)
np.testing.assert_array_almost_equal(history["step"], ref_step, decimal=0)

@data(H2_PAULI, H2_OP)
@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_vqd_optimizer(self, op):
"""Test running same VQD twice to re-use optimizer, then switch optimizer"""
vqd = VQD(
Expand All @@ -218,7 +231,7 @@ def run_check():
vqd.optimizer = L_BFGS_B()
run_check()

@data(H2_PAULI, H2_OP)
@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_aux_operators_list(self, op):
"""Test list-based aux_operators."""
wavefunction = self.ry_wavefunction
Expand All @@ -239,8 +252,8 @@ def test_aux_operators_list(self, op):
self.assertIsNone(result.aux_operators_evaluated)

# Go again with two auxiliary operators
aux_op1 = PauliSumOp.from_list([("II", 2.0)])
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_op1 = SparsePauliOp.from_list([("II", 2.0)])
aux_op2 = SparsePauliOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_ops = [aux_op1, aux_op2]
result = vqd.compute_eigenvalues(op, aux_operators=aux_ops)
np.testing.assert_array_almost_equal(
Expand Down Expand Up @@ -271,7 +284,7 @@ def test_aux_operators_list(self, op):
self.assertIsInstance(result.aux_operators_evaluated[0][1][1], dict)
self.assertIsInstance(result.aux_operators_evaluated[0][3][1], dict)

@data(H2_PAULI, H2_OP)
@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_aux_operators_dict(self, op):
"""Test dictionary compatibility of aux_operators"""
wavefunction = self.ry_wavefunction
Expand All @@ -291,8 +304,8 @@ def test_aux_operators_dict(self, op):
self.assertIsNone(result.aux_operators_evaluated)

# Go again with two auxiliary operators
aux_op1 = PauliSumOp.from_list([("II", 2.0)])
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_op1 = SparsePauliOp.from_list([("II", 2.0)])
aux_op2 = SparsePauliOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_ops = {"aux_op1": aux_op1, "aux_op2": aux_op2}
result = vqd.compute_eigenvalues(op, aux_operators=aux_ops)
self.assertEqual(len(result.eigenvalues), 2)
Expand Down Expand Up @@ -325,7 +338,7 @@ def test_aux_operators_dict(self, op):
self.assertIsInstance(result.aux_operators_evaluated[0]["aux_op2"][1], dict)
self.assertIsInstance(result.aux_operators_evaluated[0]["zero_operator"][1], dict)

@data(H2_PAULI, H2_OP)
@data(H2_PAULI, H2_OP, H2_SPARSE_PAULI)
def test_aux_operator_std_dev(self, op):
"""Test non-zero standard deviations of aux operators."""
wavefunction = self.ry_wavefunction
Expand All @@ -348,8 +361,8 @@ def test_aux_operator_std_dev(self, op):
)

# Go again with two auxiliary operators
aux_op1 = PauliSumOp.from_list([("II", 2.0)])
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_op1 = SparsePauliOp.from_list([("II", 2.0)])
aux_op2 = SparsePauliOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_ops = [aux_op1, aux_op2]
result = vqd.compute_eigenvalues(op, aux_operators=aux_ops)
self.assertEqual(len(result.aux_operators_evaluated), 2)
Expand Down

0 comments on commit cfca5f4

Please sign in to comment.