Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adding reduce to Ops.jl #840

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 46 additions & 0 deletions src/Ops.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2313,4 +2313,50 @@ Produces a [`Reactant.MLIR.Dialects.sdy.sharding_constraint`](@ref) operation wi
end
end

@noinline function reduce(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you follow up with a PR to update the mapreduce impl to call this function

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure I'll do that

x::TracedRArray{T},
init_values::TracedRNumber{T},
dimensions::Vector{Int},
fn::Function,
location=mlir_stacktrace("reduce", @__FILE__, @__LINE__)
) where {T}
reduced_shape = Tuple(deleteat!(collect(size(x)), dimensions))

result_type = mlir_type(TracedRArray{T, length(reduced_shape)}, reduced_shape)

sample_inputs = [Reactant.ConcretePJRTNumber(T(0)), Reactant.ConcretePJRTNumber(T(0))]

func =
Reactant.TracedUtils.make_mlir_fn(
fn,
(sample_inputs),
(),
"reduce_fn";
args_in_result=:none,
return_dialect=:stablehlo,
).f
@assert MLIR.IR.nregions(func) == 1
fn_name = String(
MLIR.IR.attr(func, String(MLIR.API.mlirSymbolTableGetSymbolAttributeName()))
)
@assert fn_name == "reduce_fn"
ftype_attr = MLIR.IR.attr(func, "function_type")
ftype = MLIR.IR.Type(ftype_attr)
@assert MLIR.IR.result(ftype) == MLIR.IR.TensorType((), MLIR.IR.Type(T)) error (
"$fn return type is not tensor<i1>"
)
fn = MLIR.IR.Region()
MLIR.API.mlirRegionTakeBody(fn, MLIR.IR.region(func, 1))
MLIR.IR.rmfromparent!(func)

dimensions = MLIR.IR.Attribute(dimensions .- 1)

res = MLIR.IR.result(stablehlo.reduce(
[x.mlir_data], [init_values.mlir_data];
result_0=[result_type], dimensions=dimensions, body=fn, location=location
))

return TracedRArray{T, length(reduced_shape)}((), res, reduced_shape)
end

end # module Ops
32 changes: 32 additions & 0 deletions test/ops.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1071,3 +1071,35 @@ end

@test Reactant.@jit(f_multiple_hlo_calls(x_reactant, y_reactant))[1] ≈ (x .+ y) .* y
end

@testset "reduce" begin
# stablehlo reduce collapse the dimension so that (1,3) beomces (3, )
# while Julia reduce retains (1, 3). The test will fail despite elements being equal
function squeeze_dims(r)
return dropdims(r,dims=tuple(findall(size(r).==1)...))
end

A = rand(3, 4, 5)
A_ra = Reactant.to_rarray(A)
init = 2.1
init_ra = @jit Reactant.Ops.constant(init)

dims = [2]
r_hlo = @jit Reactant.Ops.reduce(A_ra, init_ra, dims, *)
r = reduce(*, A; dims=dims, init=init)
@test r_hlo ≈ squeeze_dims(r)

dims = [1,3]
r_hlo = @jit Reactant.Ops.reduce(A_ra, init_ra, dims, +)
r = reduce(+, A; dims=dims, init=init)
@test r_hlo ≈ squeeze_dims(r)

dims = [1,2,3]
r_hlo = @jit Reactant.Ops.reduce(A_ra, init_ra, dims, +)
r = reduce(+, A; dims=dims, init=init)
@test r_hlo ≈ squeeze_dims(r)

end



Loading