A Private and Decentralized Oracle Solution
Every transaction you make is private and secure via ring signatures and stealth addresses.
A community project with public code. Anyone can contribute ideas.
Equilibria can be used by anyone with access to the internet.
Equilibria is a hybrid PoW/PoS decentralized oracle node network
Use-cases span from stablecoins to eSports
Website Twitter Discord Telegram
Copyright (c) 2014-2019 The Monero Project.
Copyright (c) 2018-2024 Project Triton/Equilibria.
Portions Copyright (c) 2012-2013 The Cryptonote developers.
- CRC team, Malbit, ArqTras, various developers
Anyone is welcome to contribute to Equilibria's codebase! If you have a fix or code change, feel free to submit it as a pull request directly to the "master" branch. In cases where the change is relatively small or does not affect other parts of the codebase it may be merged in immediately by any one of the collaborators. On the other hand, if the change is particularly large or complex, it is expected that it will be discussed at length either well in advance of the pull request being submitted, or even directly on the pull request.
See LICENSE.
If you want to help out, see CONTRIBUTING for a set of guidelines.
The following table summarizes the tools and libraries required to build. A
few of the libraries are also included in this repository (marked as
"Vendored"). By default, the build uses the library installed on the system,
and ignores the vendored sources. However, if no library is found installed on
the system, then the vendored source will be built and used. The vendored
sources are also used for statically-linked builds because distribution
packages often include only shared library binaries (.so
) but not static
library archives (.a
).
Dep | Min. version | Vendored | Debian/Ubuntu pkg | Arch pkg | Void pkg | Fedora pkg | Optional | Purpose |
---|---|---|---|---|---|---|---|---|
GCC | 4.7.3 | NO | build-essential |
base-devel |
base-devel |
gcc |
NO | |
CMake | 3.5 | NO | cmake |
cmake |
cmake |
cmake |
NO | |
pkg-config | any | NO | pkg-config |
base-devel |
base-devel |
pkgconf |
NO | |
Boost | 1.58 | NO | libboost-all-dev |
boost |
boost-devel |
boost-devel |
NO | C++ libraries |
OpenSSL | basically any | NO | libssl-dev |
openssl |
libressl-devel |
openssl-devel |
NO | sha256 sum |
libzmq | 3.0.0 | NO | libzmq3-dev |
zeromq |
zeromq-devel |
zeromq-devel |
NO | ZeroMQ library |
OpenPGM | ? | NO | libpgm-dev |
libpgm |
openpgm-devel |
NO | For ZeroMQ | |
libnorm[2] | ? | NO | libnorm-dev |
YES | For ZeroMQ | |||
libunbound | 1.4.16 | YES | libunbound-dev |
unbound |
unbound-devel |
unbound-devel |
NO | DNS resolver |
libsodium | ? | NO | libsodium-dev |
libsodium |
libsodium-devel |
libsodium-devel |
NO | cryptography |
libunwind | any | NO | libunwind8-dev |
libunwind |
libunwind-devel |
libunwind-devel |
YES | Stack traces |
liblzma | any | NO | liblzma-dev |
xz |
liblzma-devel |
xz-devel |
YES | For libunwind |
libreadline | 6.3.0 | NO | libreadline6-dev |
readline |
readline-devel |
readline-devel |
YES | Input editing |
ldns | 1.6.17 | NO | libldns-dev |
ldns |
libldns-devel |
ldns-devel |
YES | SSL toolkit |
expat | 1.1 | NO | libexpat1-dev |
expat |
expat-devel |
expat-devel |
YES | XML parsing |
GTest | 1.5 | YES | libgtest-dev [1] |
gtest |
gtest-devel |
gtest-devel |
YES | Test suite |
Doxygen | any | NO | doxygen |
doxygen |
doxygen |
doxygen |
YES | Documentation |
Graphviz | any | NO | graphviz |
graphviz |
graphviz |
graphviz |
YES | Documentation |
lrelease | ? | NO | qttools5-dev-tools |
qt5-tools |
qt5-tools |
qt5-linguist |
YES | Translations |
libhidapi | ? | NO | libhidapi-dev |
hidapi |
hidapi-devel |
hidapi-devel |
YES | Hardware wallet |
libusb | ? | NO | libusb-dev |
libusb |
libusb-devel |
libusb-devel |
YES | Hardware wallet |
libprotobuf | ? | NO | libprotobuf-dev |
protobuf |
protobuf-devel |
protobuf-devel |
YES | Hardware wallet |
protoc | ? | NO | protobuf-compiler |
protobuf |
protobuf |
protobuf-compiler |
YES | Hardware wallet |
[1] On Debian/Ubuntu libgtest-dev
only includes sources and headers. You must
build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make && sudo mv libg* /usr/lib/
[2] libnorm-dev is needed if your zmq library was built with libnorm, and not needed otherwise
Install all dependencies at once on Debian/Ubuntu:
sudo apt update && sudo apt install build-essential cmake pkg-config libboost-all-dev libssl-dev libzmq3-dev libunbound-dev libsodium-dev libunwind8-dev liblzma-dev libreadline6-dev libldns-dev libexpat1-dev doxygen graphviz libpgm-dev qttools5-dev-tools libhidapi-dev libusb-dev libprotobuf-dev protobuf-compiler
Install all dependencies at once on macOS with the provided Brewfile:
brew update && brew bundle --file=contrib/brew/Brewfile
FreeBSD one liner for required to build dependencies
pkg install git gmake cmake pkgconf boost-libs libzmq libsodium
Clone recursively to pull-in needed submodule(s):
$ git clone --recursive https://github.com/EquilibriaCC/Equilibria.git equilibria
If you already have a repo cloned, initialize and update:
$ cd equilibria && git submodule init && git submodule update
Equilibria uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.
-
Install the dependencies
-
Change to the root of the source code directory, change to the most recent release branch, and build:
cd equilibria git checkout v21.0.0 make
Optional: If your machine has several cores and enough memory, enable parallel build by running
make -j<number of threads>
instead ofmake
. For this to be worthwhile, the machine should have one core and about 2GB of RAM available per thread.Note: The instructions above will compile the most stable release of the Equilibria software. If you would like to use and test the most recent software, use
git checkout master
. The master branch may contain updates that are both unstable and incompatible with release software, though testing is always encouraged. -
The resulting executables can be found in
build/release/bin
-
Add
PATH="$PATH:$HOME/equilibria/build/Linux/release/bin"
to.profile
-
Run Equilibria with
daemond --detach
-
Optional: build and run the test suite to verify the binaries:
make release-test
NOTE:
core_tests
test may take a few hours to complete. -
Optional: to build binaries suitable for debugging:
make debug
-
Optional: to build statically-linked binaries:
make release-static
Dependencies need to be built with -fPIC. Static libraries usually aren't, so you may have to build them yourself with -fPIC. Refer to their documentation for how to build them.
-
Optional: build documentation in
doc/html
(omitHAVE_DOT=YES
ifgraphviz
is not installed):HAVE_DOT=YES doxygen Doxyfile
You can also cross-compile Equilibria static binaries on Linux for Windows with the depends
system.
make depends target=x86_64-linux-gnu
for 64-bit linux binaries.make depends target=x86_64-w64-mingw32
for 64-bit windows binaries. Requires: python3 g++-mingw-w64-x86-64 wine1.6 bcmake depends target=x86_64-apple-darwin
for macOS-x64 binaries. Requires: cmake imagemagick libcap-dev librsvg2-bin libz-dev libbz2-dev libtiff-tools libtinfo5 curl bsdmainutils python3-dev python3-setuptoolsmake depends target=aarch64-apple-darwin
for macOS-arm64 Apple Silicon. Requires: cmake imagemagick libcap-dev librsvg2-bin libz-dev libbz2-dev libtiff-tools libtinfo5 curl bsdmainutils python3-dev python3-setuptoolsmake depends target=arm-linux-gnueabihf
for armv7 binaries. Requires: g++-arm-linux-gnueabihfmake depends target=aarch64-linux-gnu
for armv8 binaries. Requires: g++-aarch64-linux-gnu
By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:
make release-static-linux-armv6
builds binaries on Linux portable across POSIX systems on armv6 processorsmake release-static-linux-armv7
builds binaries on Linux portable across POSIX systems on armv7 processorsmake release-static-linux-armv8
builds binaries on Linux portable across POSIX systems on armv8 processorsmake release-static-mac-x64
builds binaries on MacOS on x86_64 portable across POSIX systems on x86_64 processorsmake release-static-mac-arm64
builds binaries on MacOS on arm64 portable across POSIX systems on arm64 processorsmake release-static-win64
builds binaries on 64-bit Windows portable across 64-bit Windows systemsmake release-static-linux-x86_64
builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processors
Tested on a Raspberry Pi Zero with a clean install of minimal Raspbian Stretch (2017-09-07 or later) from https://www.raspberrypi.org/downloads/raspbian/. If you are using Raspian Jessie, please see note in the following section.
-
apt-get update && apt-get upgrade
to install all of the latest software -
Install the dependencies for Monero from the 'Debian' column in the table above.
-
Increase the system swap size:
sudo /etc/init.d/dphys-swapfile stop sudo nano /etc/dphys-swapfile CONF_SWAPSIZE=2048 sudo /etc/init.d/dphys-swapfile start
-
If using an external hard disk without an external power supply, ensure it gets enough power to avoid hardware issues when syncing, by adding the line "max_usb_current=1" to /boot/config.txt
-
Clone Equilibria and checkout the most recent release version:
git clone https://github.com/equilibriacc/equilibria.git cd equilibria git checkout v21.0.0
-
Build:
git submodule init && git submodule update make release
-
Wait 4-6 hours
-
The resulting executables can be found in
build/release/bin
-
Add
PATH="$PATH:$HOME/monero/build/release/bin"
to.profile
-
Run Monero with
daemon --detach
-
You may wish to reduce the size of the swap file after the build has finished, and delete the boost directory from your home directory
If you are using the older Raspbian Jessie image, compiling Monero is a bit more complicated. The version of Boost available in the Debian Jessie repositories is too old to use with Monero, and thus you must compile a newer version yourself. The following explains the extra steps, and has been tested on a Raspberry Pi 2 with a clean install of minimal Raspbian Jessie.
-
As before,
apt-get update && apt-get upgrade
to install all of the latest software, and increase the system swap sizesudo /etc/init.d/dphys-swapfile stop sudo nano /etc/dphys-swapfile CONF_SWAPSIZE=2048 sudo /etc/init.d/dphys-swapfile start
-
Then, install the dependencies for Monero except
libunwind
andlibboost-all-dev
-
Install the latest version of boost (this may first require invoking
apt-get remove --purge libboost*-dev
to remove a previous version if you're not using a clean install):cd wget https://sourceforge.net/projects/boost/files/boost/1.72.0/boost_1_72_0.tar.bz2 tar xvfo boost_1_72_0.tar.bz2 cd boost_1_72_0 ./bootstrap.sh sudo ./b2
-
Wait ~8 hours
sudo ./bjam cxxflags=-fPIC cflags=-fPIC -a install
-
Wait ~4 hours
-
From here, follow the general Raspberry Pi instructions from the "Clone monero and checkout most recent release version" step.
Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.
Preparing the build environment
-
Download and install the MSYS2 installer, either the 64-bit or the 32-bit package, depending on your system.
-
Open the MSYS shell via the
MSYS2 Shell
shortcut -
Update packages using pacman:
pacman -Syu
-
Exit the MSYS shell using Alt+F4
-
Edit the properties for the
MSYS2 Shell
shortcut changing "msys2_shell.bat" to "msys2_shell.cmd -mingw64" for 64-bit builds or "msys2_shell.cmd -mingw32" for 32-bit builds -
Restart MSYS shell via modified shortcut and update packages again using pacman:
pacman -Syu
-
Install dependencies:
To build for 64-bit Windows:
pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost mingw-w64-x86_64-openssl mingw-w64-x86_64-zeromq mingw-w64-x86_64-libsodium mingw-w64-x86_64-hidapi
To build for 32-bit Windows:
pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost mingw-w64-i686-openssl mingw-w64-i686-zeromq mingw-w64-i686-libsodium mingw-w64-i686-hidapi
-
Open the MingW shell via
MinGW-w64-Win64 Shell
shortcut on 64-bit Windows orMinGW-w64-Win64 Shell
shortcut on 32-bit Windows. Note that if you are running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.
Cloning
-
To git clone, run:
git clone --recursive https://github.com/EquilibriaCC/Equilibria.git equilibria
Building
-
Change to the cloned directory, run:
cd equilibria git checkout v21.0.0
-
If you are on a 64-bit system, run:
make release-static-win64
-
If you are on a 32-bit system, run:
make release-static-win32
-
The resulting executables can be found in
build/release/bin
-
Optional: to build Windows binaries suitable for debugging on a 64-bit system, run:
make debug-static-win64
-
Optional: to build Windows binaries suitable for debugging on a 32-bit system, run:
make debug-static-win32
-
The resulting executables can be found in
build/debug/bin