forked from hardmaru/estool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
334 lines (271 loc) · 9.34 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import numpy as np
import random
# I implemented Schmidhuber's "Compressed Network Search" but didn't use it.
# ndded for the compress/decompress functions.
#from scipy.fftpack import dct
import json
import sys
import config
from env import make_env
import time
from gym.wrappers import Monitor
final_mode = False
render_mode = True
RENDER_DELAY = False
record_video = False
MEAN_MODE = False
def compress_2d(w, shape=None):
s = w.shape
if shape:
s = shape
c = dct(dct(w, axis=0, type=2, norm='ortho'), axis=1, type=2, norm='ortho')
return c[0:s[0], 0:s[1]]
def decompress_2d(c, shape):
c_out = np.zeros(shape)
c_out[0:c.shape[0], 0:c.shape[1]] = c
w = dct(dct(c_out.T, type=3, norm='ortho').T, type=3, norm='ortho')
return w
def compress_1d(w, shape=None, axis=0):
s = w.shape
if shape:
s = shape
c = dct(w, axis=axis, type=2, norm='ortho')
return c[0:s[0], 0:s[1]]
def decompress_1d(c, shape, axis=0):
c_out = np.zeros(shape)
c_out[0:c.shape[0], 0:c.shape[1]] = c
w = dct(c_out, axis=axis, type=3, norm='ortho')
return w
def make_model(game):
# can be extended in the future.
model = Model(game)
return model
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def relu(x):
return np.maximum(x, 0)
def passthru(x):
return x
# useful for discrete actions
def softmax(x):
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
# useful for discrete actions
def sample(p):
return np.argmax(np.random.multinomial(1, p))
class Model:
''' simple feedforward model '''
def __init__(self, game):
self.output_noise = game.output_noise
self.env_name = game.env_name
self.layer_1 = game.layers[0]
self.layer_2 = game.layers[1]
self.rnn_mode = False # in the future will be useful
self.time_input = 0 # use extra sinusoid input
self.sigma_bias = game.noise_bias # bias in stdev of output
self.sigma_factor = 0.5 # multiplicative in stdev of output
if game.time_factor > 0:
self.time_factor = float(game.time_factor)
self.time_input = 1
self.input_size = game.input_size
self.output_size = game.output_size
self.shapes = [ (self.input_size + self.time_input, self.layer_1),
(self.layer_1, self.layer_2),
(self.layer_2, self.output_size)]
self.sample_output = False
if game.activation == 'relu':
self.activations = [relu, relu, passthru]
elif game.activation == 'sigmoid':
self.activations = [np.tanh, np.tanh, sigmoid]
elif game.activation == 'softmax':
self.activations = [np.tanh, np.tanh, softmax]
self.sample_output = True
elif game.activation == 'passthru':
self.activations = [np.tanh, np.tanh, passthru]
else:
self.activations = [np.tanh, np.tanh, np.tanh]
self.weight = []
self.bias = []
self.bias_log_std = []
self.bias_std = []
self.param_count = 0
idx = 0
for shape in self.shapes:
self.weight.append(np.zeros(shape=shape))
self.bias.append(np.zeros(shape=shape[1]))
self.param_count += (np.product(shape) + shape[1])
if self.output_noise[idx]:
self.param_count += shape[1]
log_std = np.zeros(shape=shape[1])
self.bias_log_std.append(log_std)
out_std = np.exp(self.sigma_factor*log_std + self.sigma_bias)
self.bias_std.append(out_std)
idx += 1
self.render_mode = False
def make_env(self, seed=-1, render_mode=False):
self.render_mode = render_mode
self.env = make_env(self.env_name, seed=seed, render_mode=render_mode)
def get_action(self, x, t=0, mean_mode=False):
# if mean_mode = True, ignore sampling.
h = np.array(x).flatten()
if self.time_input == 1:
time_signal = float(t) / self.time_factor
h = np.concatenate([h, [time_signal]])
num_layers = len(self.weight)
for i in range(num_layers):
w = self.weight[i]
b = self.bias[i]
h = np.matmul(h, w) + b
if (self.output_noise[i] and (not mean_mode)):
out_size = self.shapes[i][1]
out_std = self.bias_std[i]
output_noise = np.random.randn(out_size)*out_std
h += output_noise
h = self.activations[i](h)
if self.sample_output:
h = sample(h)
return h
def set_model_params(self, model_params):
pointer = 0
for i in range(len(self.shapes)):
w_shape = self.shapes[i]
b_shape = self.shapes[i][1]
s_w = np.product(w_shape)
s = s_w + b_shape
chunk = np.array(model_params[pointer:pointer+s])
self.weight[i] = chunk[:s_w].reshape(w_shape)
self.bias[i] = chunk[s_w:].reshape(b_shape)
pointer += s
if self.output_noise[i]:
s = b_shape
self.bias_log_std[i] = np.array(model_params[pointer:pointer+s])
self.bias_std[i] = np.exp(self.sigma_factor*self.bias_log_std[i] + self.sigma_bias)
if self.render_mode:
print("bias_std, layer", i, self.bias_std[i])
pointer += s
def load_model(self, filename):
with open(filename) as f:
data = json.load(f)
print('loading file %s' % (filename))
self.data = data
model_params = np.array(data[0]) # assuming other stuff is in data
self.set_model_params(model_params)
def get_random_model_params(self, stdev=0.1):
return np.random.randn(self.param_count)*stdev
def evaluate(model):
# run 100 times and average score, according to the reles.
model.env.seed(0)
total_reward = 0.0
N = 100
for i in range(N):
reward, t = simulate(model, train_mode=False, render_mode=False, num_episode=1)
total_reward += reward[0]
return (total_reward / float(N))
def compress_input_dct(obs):
new_obs = np.zeros((8, 8))
for i in range(obs.shape[2]):
new_obs = +compress_2d(obs[:, :, i] / 255., shape=(8, 8))
new_obs /= float(obs.shape[2])
return new_obs.flatten()
def simulate(model, train_mode=False, render_mode=True, num_episode=5, seed=-1, max_len=-1):
reward_list = []
t_list = []
orig_mode = True # hack for bipedhard's reward augmentation during training (set to false for hack)
dct_compress_mode = False
max_episode_length = 3000
if train_mode and max_len > 0:
if max_len < max_episode_length:
max_episode_length = max_len
if (seed >= 0):
random.seed(seed)
np.random.seed(seed)
model.env.seed(seed)
for episode in range(num_episode):
if model.rnn_mode:
model.reset()
obs = model.env.reset()
if dct_compress_mode and obs is not None:
obs = compress_input_dct(obs)
if obs is None:
obs = np.zeros(model.input_size)
total_reward = 0.0
stumbled = False # hack for bipedhard's reward augmentation during training. turned off.
reward_threshold = 300 # consider we have won if we got more than this
for t in range(max_episode_length):
if render_mode:
model.env.render("human")
if RENDER_DELAY:
time.sleep(0.01)
if model.rnn_mode:
model.update(obs, t)
action = model.get_action()
else:
if MEAN_MODE:
action = model.get_action(obs, t=t, mean_mode=(not train_mode))
else:
action = model.get_action(obs, t=t, mean_mode=False)
prev_obs = obs
obs, reward, done, info = model.env.step(action)
if dct_compress_mode:
obs = compress_input_dct(obs)
if train_mode and reward == -100 and (not orig_mode):
# hack for bipedhard's reward augmentation during training. turned off.
reward = 0
stumbled = True
if (render_mode):
pass
#print("action", action, "step reward", reward)
#print("step reward", reward)
total_reward += reward
if done:
if train_mode and (not stumbled) and (total_reward > reward_threshold) and (not orig_mode):
# hack for bipedhard's reward augmentation during training. turned off.
total_reward += 100
break
if render_mode:
print("reward", total_reward, "timesteps", t)
reward_list.append(total_reward)
t_list.append(t)
return reward_list, t_list
def main():
global RENDER_DELAY
assert len(sys.argv) > 1, 'python model.py gamename path_to_mode.json'
gamename = sys.argv[1]
if gamename.startswith("bullet"):
RENDER_DELAY = True
use_model = False
game = config.games[gamename]
if len(sys.argv) > 2:
use_model = True
filename = sys.argv[2]
print("filename", filename)
the_seed = 0
if len(sys.argv) > 3:
the_seed = int(sys.argv[3])
print("seed", the_seed)
model = make_model(game)
print('model size', model.param_count)
model.make_env(render_mode=render_mode)
if use_model:
model.load_model(filename)
else:
params = model.get_random_model_params(stdev=0.1)
model.set_model_params(params)
if final_mode:
total_reward = 0.0
np.random.seed(the_seed)
model.env.seed(the_seed)
for i in range(100):
reward, steps_taken = simulate(model, train_mode=False, render_mode=False, num_episode=1)
total_reward += reward[0]
print("seed", the_seed, "average_reward", total_reward/100)
else:
if record_video:
model.env = Monitor(model.env, directory='/tmp/'+gamename,video_callable=lambda episode_id: True, write_upon_reset=True, force=True)
while(5):
reward, steps_taken = simulate(model,
train_mode=False, render_mode=render_mode, num_episode=1)
print ("terminal reward", reward, "average steps taken", np.mean(steps_taken)+1)
#break
if __name__ == "__main__":
main()