Here, we provide the pytorch implementation of the paper. For more information, please see our published paper at IEEE TGRS or arXiv. [IEEE TGRS-2023] VcT: Visual change Transformer for Remote Sensing Image Change Detection, Bo Jiang, Zitian Wang, Xixi Wang, Ziyan Zhang, Lan Chen, Xiao Wang, Bin Luo [arXiv] [IEEE]
Python 3.7
pytorch 1.11.0
einops 0.6.0
torch-scatter 2.0.9
scipy 1.7.3
matplotlib 3.5.3
You can find the training script run_cd.sh
. You can run the script file by sh run_cd.sh
in the command environment.
The dataset path is modified in data_config.py
.
The detailed script file run_cd.sh
is as follows:
gpus=0
checkpoint_root=checkpoints
data_name=LEVIR # dataset name
img_size=256
batch_size=8
lr=0.01
max_epochs=200 #training epochs
net_G=Reliable_transformer # model name
lr_policy=linear
split=train # training txt
split_val=val #validation txt
project_name=CD_${net_G}_${data_name}_b${batch_size}_lr${lr}_${split}_${split_val}_${max_epochs}_${lr_policy}
python main_cd.py --img_size ${img_size} --checkpoint_root ${checkpoint_root} --lr_policy ${lr_policy} --split ${split} --split_val ${split_val} --net_G ${net_G} --gpu_ids ${gpus} --max_epochs ${max_epochs} --project_name ${project_name} --batch_size ${batch_size} --data_name ${data_name} --lr ${lr}
Checkpoints of our model can be downloaded from: [DropBox] or [Baiduyun (passward: AHUE)]
You can find the evaluation script eval.sh
. You can run the script file by sh eval.sh
in the command environment.
The detailed script file eval.sh
is as follows:
gpus=0
data_name=LEVIR # dataset name
net_G=Reliable_transformer # model name
split=test # test.txt
project_name=VcT_LEVIR # the name of the subfolder in the checkpoints folder
checkpoint_name=best_ckpt.pt # the name of evaluated model file
python eval_cd.py --split ${split} --net_G ${net_G} --checkpoint_name ${checkpoint_name} --gpu_ids ${gpus} --project_name ${project_name} --data_name ${data_name}
"""
Change detection data set with pixel-level binary labels;
├─A
├─B
├─label
└─list
"""
A
: images of t1 phase;
B
:images of t2 phase;
label
: label maps;
list
: contains train.txt, val.txt and test.txt
, each file records the image names (XXX.png) in the change detection dataset.
Download method #1
Download method #2
- BaiduYun: [Baiduyun (passward: AHUE)]
Code is released for non-commercial and research purposes only. For commercial purposes, please contact the authors.
If you use this code for your research, please cite our paper:
@article{jiang2023vct,
title={VcT: Visual change Transformer for Remote Sensing Image Change Detection},
author={Jiang, Bo and Wang, Zitian and Wang, Xixi and Zhang, Ziyan and Chen, Lan and Wang, Xiao and Luo, Bin},
journal={arXiv preprint arXiv:2310.11417},
year={2023}
}