-
Notifications
You must be signed in to change notification settings - Fork 186
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #87 from vfragoso/vifragos/phi3v
Adding microsoft/Phi-3-vision-128k-instruct model.
- Loading branch information
Showing
3 changed files
with
244 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,240 @@ | ||
import torch | ||
import logging | ||
|
||
from accelerate import Accelerator, DistributedType | ||
from lmms_eval import utils | ||
from lmms_eval.api.instance import Instance | ||
from lmms_eval.api.model import lmms | ||
from lmms_eval.api.registry import register_model | ||
from tqdm import tqdm | ||
from transformers import AutoModelForCausalLM | ||
from transformers import AutoProcessor | ||
from typing import List, Optional, Tuple, Union | ||
|
||
eval_logger = logging.getLogger("lmms-eval") | ||
|
||
|
||
@register_model("phi3v") | ||
class Phi3v(lmms): | ||
""" | ||
This class implements inference for the microsoft/Phi-3-vision-128k-instruct model. | ||
To learn more about this model please visit the following links: | ||
1. https://huggingface.co/microsoft/Phi-3-vision-128k-instruct | ||
2. https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/ | ||
3. https://github.com/microsoft/Phi-3CookBook | ||
NOTE: This class was adapted from quen_vl.py and llava_hf.py. | ||
Example: | ||
accelerate launch --num_processes=4 -m lmms_eval --model phi3v --tasks mmmu_val \ | ||
--batch_size 1 --log_samples --log_samples_suffix phi3v_mmmu --output_path ./logs/ | ||
""" | ||
def __init__( | ||
self, | ||
model_id_name: str = "microsoft/Phi-3-vision-128k-instruct", | ||
device: str = "cuda", | ||
dtype: Optional[Union[str, torch.dtype]] = "auto", | ||
batch_size: int = 1, | ||
trust_remote_code: Optional[bool] = True, | ||
use_cache: bool = True, | ||
**kwargs, | ||
) -> None: | ||
super().__init__() | ||
# Do not use kwargs for now | ||
assert kwargs == {}, f"Unexpected kwargs: {kwargs}" | ||
# Setup accelerator. | ||
accelerator = Accelerator() | ||
if accelerator.num_processes > 1: | ||
self._device = torch.device( | ||
f"cuda:{accelerator.local_process_index}") | ||
else: | ||
self._device = device | ||
# Load model. | ||
self._model = AutoModelForCausalLM.from_pretrained( | ||
model_id_name, | ||
device_map=device, | ||
trust_remote_code=trust_remote_code, | ||
torch_dtype=dtype) | ||
self._processor = AutoProcessor.from_pretrained( | ||
model_id_name, | ||
trust_remote_code=trust_remote_code) | ||
self._processor.tokenizer.padding_side = "left" | ||
self._tokenizer = self._processor.tokenizer | ||
self._config = self._model.config | ||
self.batch_size_per_gpu = int(batch_size) | ||
assert self.batch_size_per_gpu == 1, \ | ||
"batch_size_per_gpu > 1 is not supported for now." | ||
self.use_cache = use_cache | ||
if accelerator.num_processes > 1: | ||
distributed_type_list = [ | ||
DistributedType.FSDP, | ||
DistributedType.MULTI_GPU, | ||
DistributedType.DEEPSPEED | ||
] | ||
assert accelerator.distributed_type in distributed_type_list, \ | ||
"Unsupported distributed type provided. Only DDP and FSDP are supported." | ||
if accelerator.distributed_type == DistributedType.FSDP: | ||
self._model = accelerator.prepare(self.model) | ||
else: | ||
self._model = accelerator.prepare_model( | ||
self.model, | ||
evaluation_mode=True) | ||
self.accelerator = accelerator | ||
if self.accelerator.is_local_main_process: | ||
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") | ||
self._rank = self.accelerator.local_process_index | ||
self._world_size = self.accelerator.num_processes | ||
else: | ||
eval_logger.info(f"Using single device: {self._device}") | ||
self.model.to(self._device) | ||
self._rank = 0 | ||
self._word_size = 1 | ||
|
||
@property | ||
def config(self): | ||
# return the associated transformers.AutoConfig for the given pretrained model. | ||
return self._config | ||
|
||
@property | ||
def tokenizer(self): | ||
return self._tokenizer | ||
|
||
@property | ||
def model(self): | ||
# returns the model, unwrapping it if using Accelerate | ||
if hasattr(self, "accelerator"): | ||
return self.accelerator.unwrap_model(self._model) | ||
else: | ||
return self._model | ||
|
||
@property | ||
def eot_token_id(self): | ||
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* | ||
return self.tokenizer.eos_token_id | ||
|
||
@property | ||
def max_length(self): | ||
return self._max_length | ||
|
||
@property | ||
def batch_size(self): | ||
return self.batch_size_per_gpu | ||
|
||
@property | ||
def device(self): | ||
return self._device | ||
|
||
@property | ||
def rank(self): | ||
return self._rank | ||
|
||
@property | ||
def world_size(self): | ||
return self._world_size | ||
|
||
def flatten(self, input): | ||
new_list = [] | ||
for i in input: | ||
for j in i: | ||
new_list.append(j) | ||
return new_list | ||
|
||
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: | ||
raise NotImplementedError("Not implemented for Phi3v.") | ||
|
||
def generate_until(self, requests: List[Instance]) -> List[str]: | ||
res = [] | ||
|
||
def _collate(x): | ||
# the negative sign on len(toks) sorts descending - this has a few advantages: | ||
# - time estimates will always be over not underestimates, which is more useful for planning | ||
# - to know the size of a batch when going through the list, you know the first one is always the batch | ||
# padded context length. this is useful to simplify the batching logic and more importantly to make | ||
# automatic adaptive batches much much easier to implement | ||
# - any OOMs will happen right away rather than near the end | ||
toks = self.tokenizer.encode(x[0]) | ||
return -len(toks), x[0] | ||
|
||
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding") | ||
# we group requests by their generation_kwargs, | ||
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling | ||
# in the same batch. | ||
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) | ||
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) | ||
for chunk in chunks: | ||
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk) | ||
task = task[0] | ||
split = split[0] | ||
visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id] | ||
visuals = self.flatten(visuals) | ||
# We assume all gen kwargs in the batch are the same | ||
# this is safe to assume because the `grouper` object ensures it. | ||
gen_kwargs = all_gen_kwargs[0] | ||
# Set default values for until and max_new_tokens | ||
until = [self.tokenizer.decode(self.eot_token_id)] | ||
# Update values from gen_kwargs if present | ||
if "until" in gen_kwargs: | ||
until = gen_kwargs.pop("until") | ||
if isinstance(until, str): | ||
until = [until] | ||
elif not isinstance(until, list): | ||
raise ValueError( | ||
f"Expected `gen_kwargs['until']` to be of type Union[str,list] but got {type(until)}") | ||
if isinstance(contexts, tuple): | ||
contexts = list(contexts) | ||
for i in range(len(contexts)): | ||
if "<image>" in contexts[i]: | ||
query = contexts[i].replace("<image>", "<|image_1|>") | ||
else: | ||
query = f"<|image_1|>\n{contexts[i]}" | ||
messages = [ | ||
{"role": "user", "content": query} | ||
] | ||
contexts[i] = self._tokenizer.apply_chat_template( | ||
messages, | ||
tokenize=False, | ||
add_generation_prompt=True) | ||
assert len(contexts) == 1 | ||
# We always pass a single image given that the model only accepts one image (as of 5/21/24). | ||
context = contexts[0] | ||
pil_image = visuals[0] | ||
input_ids = self._processor( | ||
text=context, | ||
images=[pil_image], | ||
return_tensors="pt").to(self._device, self.model.dtype) | ||
# Setting default parameters. | ||
if "max_new_tokens" not in gen_kwargs: | ||
gen_kwargs["max_new_tokens"] = 1024 | ||
if "temperature" not in gen_kwargs: | ||
gen_kwargs["temperature"] = 0 | ||
if "top_p" not in gen_kwargs: | ||
gen_kwargs["top_p"] = None | ||
if "num_beams" not in gen_kwargs: | ||
gen_kwargs["num_beams"] = 1 | ||
# Generate answer. | ||
pad_token_id = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None \ | ||
else self.tokenizer.eod_id | ||
generate_ids = self.model.generate( | ||
**input_ids, | ||
eos_token_id=self.tokenizer.eos_token_id, | ||
pad_token_id=pad_token_id, | ||
do_sample=True if gen_kwargs["temperature"] > 0 else False, | ||
temperature=gen_kwargs["temperature"], | ||
top_p=gen_kwargs["top_p"], | ||
num_beams=gen_kwargs["num_beams"], | ||
max_new_tokens=gen_kwargs["max_new_tokens"], | ||
use_cache=self.use_cache, | ||
) | ||
generate_ids = generate_ids[:, input_ids['input_ids'].shape[1]:] | ||
response = self._processor.batch_decode( | ||
generate_ids, | ||
skip_special_tokens=True, | ||
clean_up_tokenization_spaces=False)[0] | ||
res.append(response) | ||
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), response) | ||
pbar.update(1) | ||
# reorder this group of results back to original unsorted form | ||
res = re_ords.get_original(res) | ||
pbar.close() | ||
return res |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters