Skip to content

Commit

Permalink
internvl_api
Browse files Browse the repository at this point in the history
  • Loading branch information
pufanyi committed Dec 20, 2024
1 parent 7f9c482 commit 7ceed90
Show file tree
Hide file tree
Showing 2 changed files with 248 additions and 0 deletions.
1 change: 1 addition & 0 deletions lmms_eval/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
"instructblip": "InstructBLIP",
"internvl": "InternVLChat",
"internvl2": "InternVL2",
"internvl2_api": "InternVL2API",
"llama_vid": "LLaMAVid",
"llava": "Llava",
"llava_hf": "LlavaHf",
Expand Down
247 changes: 247 additions & 0 deletions lmms_eval/models/internvl2_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
import base64
import json
import os
import time
from copy import deepcopy
from io import BytesIO
from typing import List, Tuple, Union

import numpy as np
import requests as url_requests
from accelerate import Accelerator, DistributedType
from tqdm import tqdm

from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model

try:
from decord import VideoReader, cpu
except ImportError:
pass

import logging
import re

from PIL import Image

eval_logger = logging.getLogger("lmms_eval_internvl2_api")


@register_model("internvl2_api")
class InternVL2API(lmms):
def __init__(
self,
api_url: Union[str, None] = None,
api_token: Union[str, None] = None,
api_key: Union[str, None] = None,
timeout: int = 120,
continual_mode: bool = False,
# modality: str = "image",
max_frames_num: int = 32,
response_persistent_folder: Union[str, None] = None,
**kwargs,
) -> None:
super().__init__()

# self.modality = modality
self.max_frames_num = max_frames_num

if api_url:
self.api_url = api_url
elif "INTERNVL2_API_URL" in os.environ:
self.api_url = os.getenv("INTERNVL2_API_URL")
else:
raise ValueError("Please provide a valid API URL for InternVL2, or set the INTERNVL2_API_URL environment variable.")

if api_token:
self.api_token = api_token
elif "INTERNVL2_API_TOKEN" in os.environ:
self.api_token = os.getenv("INTERNVL2_API_TOKEN")
else:
raise ValueError("Please provide a valid API token for InternVL2, or set the INTERNVL2_API_TOKEN environment variable.")

if api_key:
self.api_key = api_key
elif "INTERNVL2_API_KEY" in os.environ:
self.api_key = os.getenv("INTERNVL2_API_KEY")
else:
raise ValueError("Please provide a valid API key for InternVL2, or set the INTERNVL2_API_KEY environment variable.")

self.timeout = timeout
self.continual_mode = continual_mode
if self.continual_mode:
pattern = r"/([^/]+_key_api)/"
match = re.search(pattern, self.api_url)
if match:
self.model_version = match.group(1).replace("_key_api", "")
else:
print("Model version not found in the API URL. Use internvl2_pro as the default model version.")

self.model_version = "internvl2_pro"

if response_persistent_folder is None:
raise ValueError("Continual mode requires a persistent path for the response. Please provide a valid path.")

os.makedirs(response_persistent_folder, exist_ok=True)
self.response_persistent_folder = response_persistent_folder
self.response_persistent_file = os.path.join(self.response_persistent_folder, f"{self.model_version}_response.json")

if os.path.exists(self.response_persistent_file):
with open(self.response_persistent_file, "r") as f:
self.response_cache = json.load(f)
self.cache_mode = "resume"
else:
self.response_cache = {}
self.cache_mode = "start"

accelerator = Accelerator()
# assert self.batch_size_per_gpu == 1, "Llava currently does not support batched generation. See https://github.com/haotian-liu/LLaVA/issues/754. HF Llava also has this issue."
if accelerator.num_processes > 1:
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported."
self.accelerator = accelerator
if self.accelerator.is_local_main_process:
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism")
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes
else:
self.accelerator = accelerator
self._rank = self.accelerator.local_process_index
self._world_size = self.accelerator.num_processes

self.device = self.accelerator.device

# Function to encode the image
def encode_image(self, image: Image):
output_buffer = BytesIO()
image.save(output_buffer, format="PNG")
byte_data = output_buffer.getvalue()
base64_str = base64.b64encode(byte_data).decode("utf-8")
return base64_str

# Function to encode the video
def encode_video(self, video_path, for_get_frames_num):
vr = VideoReader(video_path, ctx=cpu(0))
total_frame_num = len(vr)
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, for_get_frames_num, dtype=int)

# Ensure the last frame is included
if total_frame_num - 1 not in uniform_sampled_frames:
uniform_sampled_frames = np.append(uniform_sampled_frames, total_frame_num - 1)

frame_idx = uniform_sampled_frames.tolist()
frames = vr.get_batch(frame_idx).asnumpy()

base64_frames = []
for frame in frames:
img = Image.fromarray(frame)
output_buffer = BytesIO()
img.save(output_buffer, format="PNG")
byte_data = output_buffer.getvalue()
base64_str = base64.b64encode(byte_data).decode("utf-8")
base64_frames.append(base64_str)

return base64_frames

def flatten(self, input):
new_list = []
for i in input:
for j in i:
new_list.append(j)
return new_list

def generate_until(self, requests) -> List[str]:
res = []
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")

for contexts, gen_kwargs, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
if self.continual_mode is True and self.cache_mode == "resume":
doc_uuid = f"{task}___{split}___{doc_id}"
if doc_uuid in self.response_cache:
response_text = self.response_cache[doc_uuid]
if response_text:
res.append(response_text)
pbar.update(1)
continue

visuals = [doc_to_visual(self.task_dict[task][split][doc_id])]
visuals = self.flatten(visuals)
imgs = [] # multiple images or frames for video
for visual in visuals:
if isinstance(visual, Image.Image):
img = self.encode_image(visual)
imgs.append(img)
elif isinstance(visual, str):
frames = self.encode_video(visual, self.max_frames_num)
imgs.extend(frames)

payload = {"messages": []}

response_json = {"role": "user", "content": []}

payload["messages"].append(deepcopy(response_json))
payload["messages"][0]["content"].append({"type": "text", "text": contexts})
for img in imgs:
payload["messages"][0]["content"].append({"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img}"}})

# If n image tokens are in the contexts
# contexts will be splitted into n+1 chunks
# Manually add it into the payload
payload["messages"].append(deepcopy(response_json))
payload["messages"][-1]["content"].append({"type": "text", "text": contexts[-1]})

if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if gen_kwargs["max_new_tokens"] > 4096:
gen_kwargs["max_new_tokens"] = 4096
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1

payload["max_tokens"] = gen_kwargs["max_new_tokens"]
payload["temperature"] = gen_kwargs["temperature"]
payload["api_key"] = self.api_key

payload["messages"] = json.dumps(payload["messages"])

for attempt in range(5):
try:
response = url_requests.post(self.api_url, json=payload, timeout=self.timeout, headers={"Authorization": self.api_token})
response_data = response.json()

response_text = response_data["choices"][0]["message"]["content"].strip()
break # If successful, break out of the loop

except Exception as e:
try:
error_msg = response.json()
except:
error_msg = ""

eval_logger.info(f"Attempt {attempt + 1} failed with error: {str(e)}.\nReponse: {error_msg}")
if attempt <= 5:
time.sleep(NUM_SECONDS_TO_SLEEP)
else: # If this was the last attempt, log and return empty string
eval_logger.error(f"All 5 attempts failed. Last error message: {str(e)}.\nResponse: {response.json()}")
response_text = ""
res.append(response_text)
pbar.update(1)

if self.continual_mode is True: # Cache the response
doc_uuid = f"{task}___{split}___{doc_id}"
self.response_cache[doc_uuid] = response_text
with open(self.response_persistent_file, "w") as f:
json.dump(self.response_cache, f)

pbar.close()
return res

def generate_until_multi_round(self, requests) -> List[str]:
raise NotImplementedError("TODO: Implement multi-round generation for GPT4V")

def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
# TODO
assert False, "GPT4V not support"

0 comments on commit 7ceed90

Please sign in to comment.