-
Notifications
You must be signed in to change notification settings - Fork 179
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #54 from EvolvingLMMs-Lab/add_llava_sglang
add Llava-SGlang
- Loading branch information
Showing
2 changed files
with
165 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
import torch | ||
|
||
torch.backends.cuda.matmul.allow_tf32 = True | ||
|
||
import logging | ||
from tqdm import tqdm | ||
from datetime import timedelta | ||
|
||
from lmms_eval import utils | ||
from lmms_eval.api.instance import Instance | ||
from lmms_eval.api.model import lmms | ||
from lmms_eval.api.registry import register_model | ||
|
||
from accelerate import Accelerator, InitProcessGroupKwargs | ||
from typing import List, Optional, Union, Tuple | ||
import warnings | ||
|
||
warnings.filterwarnings("ignore") | ||
from concurrent.futures import ThreadPoolExecutor, as_completed | ||
import tempfile | ||
|
||
eval_logger = logging.getLogger("lmms-eval") | ||
|
||
try: | ||
import sglang as sgl | ||
from sglang.lang.chat_template import get_chat_template | ||
except ImportError: | ||
eval_logger.error("SGLang is not installed. If you want to use llava_sglang, please install it using pip install 'sglang[all]' ") | ||
|
||
if torch.__version__ > "2.1.2": | ||
best_fit_attn_implementation = "sdpa" | ||
else: | ||
best_fit_attn_implementation = "eager" | ||
|
||
|
||
@register_model("llava_sglang") | ||
class LlavaSglang(lmms): | ||
""" | ||
Llava Sglang Model | ||
""" | ||
|
||
def __init__( | ||
self, | ||
pretrained: str = "liuhaotian/llava-v1.5-7b", | ||
tokenizer: str = "llava-hf/llava-1.5-7b-hf", | ||
tp_size: int = 1, | ||
parallel: Optional[Union[int, str]] = 64, | ||
conv_template="vicuna_v1.1", | ||
**kwargs, | ||
) -> None: | ||
super().__init__() | ||
self.pretrained = pretrained | ||
self.tokenizer = tokenizer | ||
self.tp_size = tp_size | ||
self.conv_template = conv_template | ||
torch.multiprocessing.set_start_method("spawn") | ||
|
||
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52)) | ||
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs]) | ||
assert accelerator.num_processes == 1, "Llava-sglang does not support multi-processes yet (it does support tensor parallelism)." | ||
self._rank = 0 | ||
self._world_size = 1 | ||
self.parallel = parallel | ||
|
||
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: | ||
raise NotImplementedError("Llava-sglang does not support loglikelihood evaluation yet") | ||
|
||
def generate_until(self, requests: List[Instance]) -> List[str]: | ||
|
||
runtime = sgl.Runtime(model_path=self.pretrained, tokenizer_path=self.tokenizer, tp_size=self.tp_size) | ||
runtime.endpoint.chat_template = get_chat_template(self.conv_template) | ||
sgl.set_default_backend(runtime) | ||
|
||
@sgl.function | ||
def image_qa(s, image_file, question): | ||
s += sgl.user(sgl.image(image_file) + question) | ||
s += sgl.assistant(sgl.gen("answer")) | ||
|
||
res = [] | ||
|
||
def _collate(x): | ||
# the negative sign on len(toks) sorts descending - this has a few advantages: | ||
# - time estimates will always be over not underestimates, which is more useful for planning | ||
# - to know the size of a batch when going through the list, you know the first one is always the batch | ||
# padded context length. this is useful to simplify the batching logic and more importantly to make | ||
# automatic adaptive batches much much easier to implement | ||
# - any OOMs will happen right away rather than near the end | ||
toks = x[0].split(" ") | ||
return -len(toks), x[0] | ||
|
||
# we group requests by their generation_kwargs, | ||
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling | ||
# in the same batch. | ||
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) | ||
chunks = re_ords.get_batched(n=self.parallel, batch_fn=None) | ||
num_iters = len(requests) // self.parallel if len(requests) % self.parallel == 0 else len(requests) // self.parallel + 1 | ||
pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") | ||
for chunk in chunks: | ||
contexts, all_gen_kwargs, doc_to_visuals, doc_id, tasks, splits = zip(*chunk) | ||
batched_visuals = [doc_to_visual(self.task_dict[task][split][ids]) for ids, task, split, doc_to_visual in zip(doc_id, tasks, splits, doc_to_visuals)] # [B, N] | ||
# we assume all gen kwargs in the batch are the same | ||
# this is safe to assume because the `grouper` object ensures it. | ||
gen_kwargs = all_gen_kwargs[0] | ||
if "max_new_tokens" not in gen_kwargs: | ||
gen_kwargs["max_new_tokens"] = 1024 | ||
if "temperature" not in gen_kwargs: | ||
gen_kwargs["temperature"] = 0 | ||
if "top_p" not in gen_kwargs: | ||
gen_kwargs["top_p"] = 1.0 | ||
if "num_beams" not in gen_kwargs: | ||
gen_kwargs["num_beams"] = 1 | ||
if gen_kwargs["top_p"] == 0.0: | ||
gen_kwargs["top_p"] = 1.0 | ||
gen_kwargs["temperature"] = 0.0 | ||
assert gen_kwargs["num_beams"] == 1 | ||
|
||
def save_image_to_temp_file(image): | ||
temp_file = tempfile.NamedTemporaryFile(suffix=".jpeg", delete=True) | ||
image.save(temp_file.name) | ||
return temp_file | ||
|
||
def prepare_arguments_parallel(contexts, batched_visuals, max_workers=64): | ||
arguments = [None] * len(contexts) # Initialize with placeholders | ||
tmp_files = [None] * len(contexts) # Initialize with placeholders | ||
|
||
with ThreadPoolExecutor(max_workers=max_workers) as executor: | ||
# Associate each future with its index and content | ||
future_to_info = {executor.submit(save_image_to_temp_file, pil_list[0]): (index, context, pil_list) for index, (context, pil_list) in enumerate(zip(contexts, batched_visuals))} | ||
|
||
for future in as_completed(future_to_info): | ||
index, context, pil_list = future_to_info[future] | ||
if len(pil_list) > 1: | ||
eval_logger.warning("Llava-sglang only supports one visual input per question. Using the first visual input.") | ||
try: | ||
temp_file = future.result() | ||
arguments[index] = { | ||
"image_file": temp_file.name, | ||
"question": context, | ||
} | ||
tmp_files[index] = temp_file | ||
except Exception as exc: | ||
print(f"Generated an exception: {exc}") | ||
|
||
# Filter out any None values in case of exceptions | ||
arguments = [arg for arg in arguments if arg is not None] | ||
tmp_files = [tmp_file for tmp_file in tmp_files if tmp_file is not None] | ||
|
||
return arguments, tmp_files | ||
|
||
arguments, tmp_files = prepare_arguments_parallel(contexts, batched_visuals, self.parallel) | ||
states = image_qa.run_batch(arguments, temperature=gen_kwargs["temperature"], max_new_tokens=gen_kwargs["max_new_tokens"], top_p=gen_kwargs["top_p"], num_threads=self.parallel, progress_bar=False) | ||
|
||
text_outputs = [state["answer"].strip() for state in states] | ||
# clean up the temporary files | ||
for tmp_file in tmp_files: | ||
tmp_file.close() | ||
res.extend(text_outputs) | ||
pbar.update(1) | ||
# reorder this group of results back to original unsorted form | ||
res = re_ords.get_original(res) | ||
|
||
pbar.close() | ||
runtime.shutdown() | ||
return res |