Skip to content

Commit

Permalink
Merge pull request #73 from EvolvingLMMs-Lab/kc/qwen_vl_api
Browse files Browse the repository at this point in the history
[Feat] Add qwen vl api
  • Loading branch information
Luodian authored May 13, 2024
2 parents c094448 + 423b006 commit caa5893
Show file tree
Hide file tree
Showing 2 changed files with 125 additions and 0 deletions.
1 change: 1 addition & 0 deletions lmms_eval/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
"instructblip": "InstructBLIP",
"minicpm_v": "MiniCPM_V",
"idefics2": "Idefics2",
"qwen_vl_api": "Qwen_VL_API",
}

for model_name, model_class in AVAILABLE_MODELS.items():
Expand Down
124 changes: 124 additions & 0 deletions lmms_eval/models/qwen_vl_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
from io import BytesIO
from copy import deepcopy
import os
import base64
from typing import List, Tuple, Union
from tqdm import tqdm
import requests as url_requests
import time
import logging

from lmms_eval.api.instance import Instance
from lmms_eval.api.model import lmms
from lmms_eval.api.registry import register_model
from lmms_eval import utils

from PIL import Image

NUM_SECONDS_TO_SLEEP = 5
eval_logger = logging.getLogger("lmms-eval")

try:
import dashscope
except:
eval_logger.debug("Can not import Dashscope")

API_KEY = os.getenv("DASHSCOPE_API_KEY", "YOUR_API_KEY")


@register_model("qwen-vl-api")
class Qwen_VL_API(lmms):
def __init__(
self,
model_version: str = "qwen-vl-max",
image_token: str = "<image>", # Use to separate interleaved image and text
system_prompt: str = "", # Whether you want some special system prompt here
tmp_folder: str = "./tmp", # Due to qwen's api restriction,
**kwargs,
) -> None:
super().__init__()

self.model_version = model_version
self.image_token = image_token
self.system_prompt = system_prompt
self.tmp_folder = tmp_folder

@property
def rank(self):
return self._rank

@property
def world_size(self):
return self._world_size

def generate_until(self, requests) -> List[str]:
res = []
pbar = tqdm(total=len(requests), disable=(self.rank != 0), desc="Model Responding")
os.makedirs(self.tmp_folder, exist_ok=True)

for contexts, gen_kwargs, doc_to_visual, doc_id, task, split in [reg.args for reg in requests]:
# encode, pad, and truncate contexts for this batch
visuals = [doc_to_visual(self.task_dict[task][split][doc_id])]
visuals = self.flatten(visuals)
imgs = []

for idx, visual in enumerate(visuals):
visual.save(os.path.join(self.tmp_folder, f"tmp_{idx}_{self.rank}_{self.world_size}.jpg"))
imgs.append(os.path.join(self.tmp_folder, f"tmp_{idx}_{self.rank}_{self.world_size}.jpg"))

messages = [{"role": "user", "content": []}]

if self.image_token not in contexts:
for img in imgs:
messages[0]["content"].append({"image": img})
messages[0]["content"].append({"text": contexts})
else:
contexts = contexts.split(self.image_token)

for idx, img in enumerate(imgs):
messages[0]["content"].append({"text": contexts[idx]})
messages[0]["content"].append({"image": img})
messages[0]["content"].append({"text": contexts[-1]})

if "max_new_tokens" not in gen_kwargs or gen_kwargs["max_new_tokens"] > 1500:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1

for attempt in range(5):
try:
response_data = dashscope.MultiModalConversation.call(model=self.model_version, messages=messages, api_key=API_KEY, max_length=gen_kwargs["max_new_tokens"])
except Exception as e:
eval_logger.info(f"Attempt {attempt + 1} failed with error: {str(e)}")
if attempt < 5 - 1: # If we have retries left, sleep and then continue to next attempt
time.sleep(NUM_SECONDS_TO_SLEEP)
else: # If this was the last attempt, log and return empty
eval_logger.error(f"All 5 attempts failed. Last error message: {str(e)}")
res.append("")
pbar.update(1)
continue
try:
res.append(response_data["output"]["choices"][0]["message"]["content"][0]["text"].strip())
except Exception as e:
eval_logger.error(f"Error {e} happens when parsing input.")
eval_logger.error(f"{response_data}")
res.append("")
pbar.update(1)

pbar.close()

return res

def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]:
assert False, "Not supported for claude"

def flatten(self, input):
new_list = []
for i in input:
for j in i:
new_list.append(j)
return new_list

0 comments on commit caa5893

Please sign in to comment.