Skip to content

Commit

Permalink
Laplacian of trace kernel for internal dofs TNT quadrilateral
Browse files Browse the repository at this point in the history
According to https://github.com/mscroggs/symfem/blob/main/symfem/elements/tnt.py, we need to multiply by the primary bubble function, and take the laplacian. To this end tabulation which also generates the derivatives is used.
  • Loading branch information
jmv2009 committed Dec 14, 2024
1 parent 9ee46f0 commit 7758a2c
Showing 1 changed file with 11 additions and 3 deletions.
14 changes: 11 additions & 3 deletions python/demo/demo_tnt-elements.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,10 +218,18 @@ def create_tnt_quad(degree):
x[2].append(np.zeros([0, 2]))
M[2].append(np.zeros([0, 1, 0, 1]))
else:
pts, wts = basix.make_quadrature(basix.CellType.quadrilateral, 2 * degree - 1)
poly = basix.tabulate_polynomials(
basix.PolynomialType.legendre, basix.CellType.quadrilateral, degree - 2, pts
pts, wts = basix.make_quadrature(basix.CellType.quadrilateral, 2 * degree)
u = pts[:, 0]
v = pts[:, 1]
pol_set = basix.polynomials.tabulate_polynomial_set(
basix.CellType.quadrilateral, basix.PolynomialType.legendre, degree-2, 2, pts
)
# this assumes the conventional [0 to 1][0 to 1] domain of the reference element,
# and takes the Laplacian of (1-u)*u*(1-v)*v*pol_set[0],
# cf https://github.com/mscroggs/symfem/blob/main/symfem/elements/tnt.py
poly = (pol_set[5]+pol_set[3])*(u-1)*u*(v-1)*v+ \
2*(pol_set[2]*(u-1)*u*(2*v-1)+pol_set[1]*(v-1)*v*(2*u-1)+ \
pol_set[0]*((u-1)*u+(v-1)*v))
face_ndofs = poly.shape[0]
x[2].append(pts)
mat = np.zeros((face_ndofs, 1, len(pts), 1))
Expand Down

0 comments on commit 7758a2c

Please sign in to comment.