A simulation, reconstruction and analysis framework that is based on the ROOT system. The user can create simulated data and/or perform analysis with the same framework. Geant3 and Geant4 transport engines are supported, however the user code that creates simulated data do not depend on a particular Monte Carlo engine. The framework delivers base classes which enable the users to construct their detectors and /or analysis tasks in a simple way, it also delivers some general functionality like track visualization. Moreover an interface for reading magnetic field maps is also implemented.
FairRoot is distributed under the terms of the GNU Lesser General Public Licence version 3 (LGPLv3).
Please see : https://github.com/FairRootGroup/FairRoot/releases
Please see : fairroot.gsi.de for details.
FairRoot delivers various project templates that can be used as a starting point for anybody who would like to build simulation and reconstruction with FairRoot. The project Templates are located in the FairRoot/templates directory.
By default, the name of the tree in output ROOT file is "cbmsim". In case you want to change it for your Project, you need to create "config" folder inside of top source directory of the Project and place there "rootmanager.dat" text file with following single line: "treename=name_you_chose":
cd PROJECT_TOP_DIR
mkdir config
echo 'treename=name_you_chose' > config/rootmanager.dat
It is also possible to set the folder/tree names using corresponding (SetFolderName()
/SetTreeName()
) methods of the FairRootManager.
-
Install FairSoft
-
Install FairRoot
# Set the shell variable SIMPATH to the FairSoft installation directory export SIMPATH=~/fair_install/FairSoft/install [setenv SIMPATH ~/fair_install/FairSoft/install] cd ~/fair_install git clone -b dev https://github.com/FairRootGroup/FairRoot.git cd FairRoot mkdir build cd build cmake -DCMAKE_INSTALL_PREFIX="~/fair_install/FairRoot/install" .. make make install
To run the tests do:
# To run test: make new shell, do not define SIMPATH cd ~/fair_install/FairRoot/build make test
-
Install the template:
you need to copy the project template to you own directory
# Set the shell variable FAIRROOTPATH to the FairRoot installation directory export SIMPATH=~/fair_install/FairSoft/install [setenv SIMPATH ~/fair_install/FairSoft/install] export FAIRROOTPATH=~/fair_install/FairRoot/install [setenv FAIRROOTPATH ~/fair_install/FairRoot/install] cd ~/fair_install cp -rf FairRoot/templates/project_root_containers MyTest cd MyTest ./rename.sh MyExperiment MyExp det # Please call the script with three parameters. The first one is the # name of the project. The second one is the prefix in front of # the class names. and some directories. So this second parameter # shouldn't be to long. The third parameter is the name of the # detector you want to implement. # As an example the if you want to create a project for the Panda # experiment and you want to implement a Straw Tube Tracker (stt) # you would call the script in the following way. # ./rename.sh Panda Pnd stt mkdir build cd build cmake ../MyExperiment make . ./config.sh [or source config.csh]
Now you can for example simulate some events and run the event display:
root -q ../macro/run_sim.C root ../macro/eventDisplay.C // Click on "FairEventManager" (in the top-left pane) // Click on the "Info" tab (on top of the bottom-left pane) // Increase the "Current Event" to >0 to see the events root [1] .q
If the flage -DBUILD_DOXYGEN=ON is set when calling cmake, the doxygen documentation will be generated when calling make. The generated html files can then be found in "build/doxygen/doc/html"
Doxygen documantation is also available online here