-
Notifications
You must be signed in to change notification settings - Fork 93
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f3aadb6
commit 4b27076
Showing
1 changed file
with
275 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Example creating the stiffness for a linear elasticity element using tensors or matrices" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"using JuAFEM\n", | ||
"using ForwardDiff" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"E = 200e9\n", | ||
"ν = 0.3\n", | ||
"λ = E*ν / ((1+ν) * (1 - 2ν))\n", | ||
"μ = E / (2(1+ν))\n", | ||
"δ(i,j) = i == j ? 1.0 : 0.0\n", | ||
"g(i,j,k,l) = λ*δ(i,j)*δ(k,l) + μ*(δ(i,k)*δ(j,l) + δ(i,l)*δ(j,k))\n", | ||
"\n", | ||
"# Create a random symmetric material stiffness\n", | ||
"C = rand(SymmetricTensor{4, 2})\n", | ||
"\n", | ||
"Ee = [C[1,1,1,1] C[2,2,1,1] C[1,2,1,1];\n", | ||
" C[1,1,2,2] C[2,2,2,2] C[1,2,2,2];\n", | ||
" C[1,1,1,2] C[2,2,1,2] C[1,2,1,2]];" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": { | ||
"collapsed": false, | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"function_space = Lagrange{2, JuAFEM.Square, 1}()\n", | ||
"quad_rule = get_gaussrule(Dim{2}, JuAFEM.Square(), 2)\n", | ||
"fe_values = FEValues(Float64, quad_rule, function_space);\n", | ||
"\n", | ||
"x = [0. 1 1 0;\n", | ||
" 0 0 1 1]\n", | ||
"x_vec = reinterpret(Vec{2, Float64}, x, (4,));" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Stiffness" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"ke_element_mat! (generic function with 1 method)" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"function ke_element_mat!{T,dim}(Ke, X::Vector{Vec{2, T}}, fe_values::FEValues{dim}, Ee, B, DB, BDB)\n", | ||
" n_basefuncs = n_basefunctions(get_functionspace(fe_values))\n", | ||
" @assert length(X) == n_basefuncs\n", | ||
" \n", | ||
" reinit!(fe_values, X)\n", | ||
"\n", | ||
" for q_point in 1:length(JuAFEM.points(get_quadrule(fe_values)))\n", | ||
" \n", | ||
" for i in 1:n_basefuncs\n", | ||
" dNdx = shape_gradient(fe_values, q_point, i)[1]\n", | ||
" dNdy = shape_gradient(fe_values, q_point, i)[2]\n", | ||
" B[1, 2*i - 1] = dNdx\n", | ||
" B[2, 2*i - 0] = dNdy\n", | ||
" B[3, 2*i - 0] = dNdx\n", | ||
" B[3, 2*i - 1] = dNdy\n", | ||
" end\n", | ||
" \n", | ||
" A_mul_B!(DB, Ee, B)\n", | ||
" At_mul_B!(BDB, B, DB)\n", | ||
" scale!(BDB, detJdV(fe_values, q_point))\n", | ||
" for p in 1:size(Ke,1)\n", | ||
" for q in 1:size(Ke,2)\n", | ||
" Ke[p, q] += BDB[p, q]\n", | ||
" end\n", | ||
" end\n", | ||
" end\n", | ||
" \n", | ||
" return Ke\n", | ||
"end" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"8x8 Array{Float64,2}:\n", | ||
" 0.404717 0.477524 -0.0143671 … -0.370061 -0.113279 -0.0871745\n", | ||
" 0.469551 0.430669 -0.0626017 -0.300082 -0.0425479 -0.0237196\n", | ||
" -0.244121 -0.293388 0.105868 0.185925 0.0217783 0.155135 \n", | ||
" 0.203806 0.115946 -0.0489529 -0.246533 0.154102 0.0389071\n", | ||
" -0.277071 -0.370061 -0.113279 0.477524 -0.0143671 -0.0202885\n", | ||
" -0.364402 -0.300082 -0.0425479 … 0.430669 -0.0626017 -0.106868 \n", | ||
" 0.116475 0.185925 0.0217783 -0.293388 0.105868 -0.0476721\n", | ||
" -0.308955 -0.246533 0.154102 0.115946 -0.0489529 0.0916802" | ||
] | ||
}, | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"B = zeros(3, 8)\n", | ||
"DB = zeros(3,8)\n", | ||
"BDB = zeros(8,8)\n", | ||
"Ke = zeros(8,8)\n", | ||
"fill!(Ke, 0.0)\n", | ||
"ke_element_mat!(Ke, x_vec, fe_values, Ee, B, DB, BDB)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"ke_elementt! (generic function with 1 method)" | ||
] | ||
}, | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"function ke_elementt!{T,dim}(Ke, X::Vector{Vec{2, T}}, fe_values::FEValues{dim}, D)\n", | ||
" n_basefuncs = n_basefunctions(get_functionspace(fe_values))\n", | ||
" @assert length(X) == n_basefuncs\n", | ||
" reinit!(fe_values, X)\n", | ||
" for q_point in 1:length(JuAFEM.points(get_quadrule(fe_values)))\n", | ||
" for i in 1:n_basefuncs\n", | ||
" for j in 1:n_basefuncs\n", | ||
" ∇ϕi = shape_gradient(fe_values, q_point, i)\n", | ||
" ∇ϕj = shape_gradient(fe_values, q_point, j)\n", | ||
" Ke_e = (∇ϕj ⊗ ∇ϕi) ⊡ D * detJdV(fe_values, q_point)\n", | ||
" Ke[dim*(i-1) + 1:dim*i, dim*(j-1) + 1:dim*j] += Ke_e\n", | ||
" end\n", | ||
" end\n", | ||
" end\n", | ||
" return Ke\n", | ||
"end" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 20, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"8x8 Array{Float64,2}:\n", | ||
" 0.519594 0.336348 -0.129244 … 0.00159777 -0.175752 \n", | ||
" 0.336348 0.319262 0.070602 -0.175752 -0.135126 \n", | ||
" -0.129244 0.070602 -0.00900904 0.136655 0.0208988 \n", | ||
" 0.070602 0.00453899 0.0842508 0.0208988 -0.0724996 \n", | ||
" -0.391947 -0.231198 0.00159777 -0.129244 0.070602 \n", | ||
" -0.231198 -0.188675 -0.175752 … 0.070602 0.00453899\n", | ||
" 0.00159777 -0.175752 0.136655 -0.00900904 0.0842508 \n", | ||
" -0.175752 -0.135126 0.0208988 0.0842508 0.203087 " | ||
] | ||
}, | ||
"execution_count": 20, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# Note the minor transpose!\n", | ||
"C2 = Tensor{4, 2}((i,l,k,j) -> C[i,j,k,l])\n", | ||
"x = [0. 1 1 0;\n", | ||
" 0 0 1 1]\n", | ||
"x_vec = reinterpret(Vec{2, Float64}, x, (4,))\n", | ||
"Ke2 = zeros(8,8)\n", | ||
"ke_elementt!(Ke2, x_vec, fe_values, C2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"0.5443978289896796" | ||
] | ||
}, | ||
"execution_count": 21, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"norm(Ke - Ke2) / norm(Ke)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Julia 0.4.3", | ||
"language": "julia", | ||
"name": "julia-0.4" | ||
}, | ||
"language_info": { | ||
"file_extension": ".jl", | ||
"mimetype": "application/julia", | ||
"name": "julia", | ||
"version": "0.4.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |