-
Notifications
You must be signed in to change notification settings - Fork 92
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Example demonstrating rigid connector
- Loading branch information
Showing
2 changed files
with
180 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
// Parameters | ||
L = 10; // Length of the plate | ||
H = 10; // Height of the plate | ||
r = 3; // Radius of the hole | ||
lc = 0.2; // Mesh size parameter | ||
|
||
// Define the plate geometry | ||
Point(1) = {0, 0, 0, lc}; | ||
Point(2) = {L, 0, 0, lc}; | ||
Point(3) = {L, H, 0, lc}; | ||
Point(4) = {0, H, 0, lc}; | ||
|
||
// Define the hole geometry | ||
Point(5) = {L/2, H/2, 0, lc}; // Center of the hole | ||
Point(6) = {L/2 + r, H/2, 0, lc}; // Start point on the circle | ||
Point(7) = {L/2, H/2 + r, 0, lc}; // Top point on the circle | ||
Point(8) = {L/2 - r, H/2, 0, lc}; // Left point on the circle | ||
Point(9) = {L/2, H/2 - r, 0, lc}; // Bottom point on the circle | ||
|
||
// Plate lines | ||
Line(1) = {1, 2}; | ||
Line(2) = {2, 3}; | ||
Line(3) = {3, 4}; | ||
Line(4) = {4, 1}; | ||
|
||
// Define circular arcs for the hole | ||
Circle(5) = {6, 5, 7}; | ||
Circle(6) = {7, 5, 8}; | ||
Circle(7) = {8, 5, 9}; | ||
Circle(8) = {9, 5, 6}; | ||
|
||
// Create surface with the hole | ||
Curve Loop(1) = {1, 2, 3, 4}; | ||
Curve Loop(2) = {5, 6, 7, 8}; | ||
Plane Surface(1) = {1, 2}; | ||
|
||
// Define physical groups for boundary conditions | ||
Physical Curve("PlateRightLeft") = {2, 4}; | ||
Physical Curve("PlateExterior") = {1, 2, 3, 4}; | ||
Physical Curve("HoleInterior") = {5, 6, 7, 8}; | ||
Physical Surface("PlateWithHole") = {1}; | ||
|
||
// Mesh the geometry | ||
Mesh 2; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
using Ferrite | ||
using FerriteGmsh | ||
|
||
|
||
grid = togrid("docs/src/literate-tutorials/plate_hole.geo") | ||
|
||
grid = Grid( | ||
Ferrite.AbstractCell[grid.cells...], | ||
grid.nodes, | ||
facetsets = grid.facetsets, | ||
cellsets = grid.cellsets | ||
) | ||
rigidbody_node = Node(Vec((5.0, 5.0))) | ||
rigidbody_cellid = getncells(grid) + 1 | ||
push!(grid.nodes, rigidbody_node) | ||
push!(grid.cells, Ferrite.Point((getnnodes(grid),))) | ||
|
||
addcellset!(grid, "rigidbody", [getncells(grid)]) | ||
addvertexset!(grid, "rigidvertex", x -> x ≈ rigidbody_node.x) | ||
|
||
ip_u = Lagrange{RefTriangle, 1}()^2 | ||
ip_rb_u = Lagrange{Ferrite.RefPoint, 1}()^2 | ||
ip_rb_θ = Lagrange{Ferrite.RefPoint, 1}() | ||
|
||
qr = QuadratureRule{RefTriangle}(2) | ||
cellvalues = CellValues(qr, ip_u) | ||
|
||
dh = DofHandler(grid) | ||
sdh = SubDofHandler(dh, getcellset(grid, "PlateWithHole")) | ||
add!(sdh, :u, ip_u) | ||
|
||
sdh = SubDofHandler(dh, getcellset(grid, "rigidbody")) | ||
add!(sdh, :u, ip_rb_u) | ||
add!(sdh, :θ, ip_rb_θ) | ||
close!(dh) | ||
|
||
ch = ConstraintHandler(dh) | ||
rb = Ferrite.RigidConnector(; | ||
rigidbody_cellid = rigidbody_cellid, | ||
facets = getfacetset(grid, "HoleInterior"), | ||
) | ||
add!(ch, rb) | ||
add!(ch, Dirichlet(:u, getfacetset(grid, "PlateRightLeft"), x -> (0.0, 0.0))) | ||
add!(ch, Dirichlet(:u, getvertexset(grid, "rigidvertex"), x -> (0.0, 0.0))) | ||
add!(ch, Dirichlet(:θ, getvertexset(grid, "rigidvertex"), x -> (0.1))) | ||
close!(ch) | ||
|
||
Emod = 200.0e3 # Young's modulus [MPa] | ||
ν = 0.3 # Poisson's ratio [-] | ||
Gmod = Emod / (2(1 + ν)) # Shear modulus | ||
Kmod = Emod / (3(1 - 2ν)) # Bulk modulus | ||
C = gradient(ϵ -> 2 * Gmod * dev(ϵ) + 3 * Kmod * vol(ϵ), zero(SymmetricTensor{2, 2})); | ||
|
||
function assemble_cell!(ke, cellvalues, C) | ||
for q_point in 1:getnquadpoints(cellvalues) | ||
## Get the integration weight for the quadrature point | ||
dΩ = getdetJdV(cellvalues, q_point) | ||
for i in 1:getnbasefunctions(cellvalues) | ||
## Gradient of the test function | ||
∇Nᵢ = shape_gradient(cellvalues, q_point, i) | ||
for j in 1:getnbasefunctions(cellvalues) | ||
## Symmetric gradient of the trial function | ||
∇ˢʸᵐNⱼ = shape_symmetric_gradient(cellvalues, q_point, j) | ||
ke[i, j] += (∇Nᵢ ⊡ C ⊡ ∇ˢʸᵐNⱼ) * dΩ | ||
end | ||
end | ||
end | ||
return ke | ||
end | ||
|
||
function assemble_global!(K, dh, cellvalues, C, cellset) | ||
## Allocate the element stiffness matrix | ||
n_basefuncs = getnbasefunctions(cellvalues) | ||
ke = zeros(n_basefuncs, n_basefuncs) | ||
## Create an assembler | ||
assembler = start_assemble(K) | ||
## Loop over all cells | ||
for cell in CellIterator(dh, cellset) | ||
## Update the shape function gradients based on the cell coordinates | ||
reinit!(cellvalues, cell) | ||
## Reset the element stiffness matrix | ||
fill!(ke, 0.0) | ||
## Compute element contribution | ||
assemble_cell!(ke, cellvalues, C) | ||
## Assemble ke into K | ||
assemble!(assembler, celldofs(cell), ke) | ||
end | ||
return K | ||
end | ||
|
||
K = allocate_matrix(dh, ch) | ||
f_ext = zeros(Float64, ndofs(dh)) | ||
|
||
assemble_global!(K, dh, cellvalues, C, getcellset(grid, "PlateWithHole")); | ||
|
||
apply!(K, f_ext, ch) | ||
a = K \ f_ext; | ||
|
||
apply!(a, ch) | ||
|
||
|
||
function calculate_stresses(grid, dh, cv, u, C, cellset) | ||
qp_stresses = [ | ||
[zero(SymmetricTensor{2, 2}) for _ in 1:getnquadpoints(cv)] | ||
for _ in 1:getncells(grid) | ||
] | ||
avg_cell_stresses = tuple((zeros(length(cellset)) for _ in 1:3)...) | ||
for cell in CellIterator(dh, cellset) | ||
reinit!(cv, cell) | ||
cell_stresses = qp_stresses[cellid(cell)] | ||
for q_point in 1:getnquadpoints(cv) | ||
ε = function_symmetric_gradient(cv, q_point, u, celldofs(cell)) | ||
cell_stresses[q_point] = C ⊡ ε | ||
end | ||
σ_avg = sum(cell_stresses) / getnquadpoints(cv) | ||
avg_cell_stresses[1][cellid(cell)] = σ_avg[1, 1] | ||
avg_cell_stresses[2][cellid(cell)] = σ_avg[2, 2] | ||
avg_cell_stresses[3][cellid(cell)] = σ_avg[1, 2] | ||
end | ||
return qp_stresses, avg_cell_stresses | ||
end | ||
|
||
qp_stresses, avg_cell_stresses = calculate_stresses(grid, dh, cellvalues, a, C, getcellset(grid, "PlateWithHole")); | ||
|
||
# We now use the the L2Projector to project the stress-field onto the piecewise linear | ||
# finite element space that we used to solve the problem. | ||
proj = L2Projector(grid) | ||
add!(proj, getcellset(grid, "PlateWithHole"), ip_u; qr_rhs = qr) | ||
close!(proj) | ||
|
||
projected = project(proj, qp_stresses) | ||
|
||
VTKGridFile("rigid_con", grid) do vtk | ||
write_solution(vtk, dh, a) | ||
write_projection(vtk, proj, projected, "stress") | ||
end |