Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Doc builder docs #21

Merged
merged 58 commits into from
May 28, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
58 commits
Select commit Hold shift + click to select a range
94536d6
add glm blank fillin tasks
wangguojim May 21, 2022
1e344a5
add glm blank fillin task
wangguojim May 21, 2022
e410d04
changed ReadMe. Rewrite docs for Dataset, tokenizer, and GLM
ZhaodongYan1 May 23, 2022
d8a384c
glm-title-generation docs
920232796 May 23, 2022
11d1f2d
fixed errors in tutorial 4
ZhaodongYan1 May 24, 2022
efe5143
added prefix tuning
ZhaodongYan1 May 24, 2022
0c0c483
changed the filename for prefix tuning in examples
ZhaodongYan1 May 24, 2022
2954f74
merged master
ZhaodongYan1 May 24, 2022
940c2b1
check glm blank fillin
920232796 May 25, 2022
0f5630f
glm-title-generation docs
920232796 May 25, 2022
8215d72
updated seqseq dataset pipeline in consistent with superglue
ZhaodongYan1 May 25, 2022
f5eb4b3
check blank fillin
920232796 May 25, 2022
3eee40e
docs,glm_blank_filling,title-generation
920232796 May 25, 2022
6b1f89a
fixed bugs in pretrain
ZhaodongYan1 May 25, 2022
77f67cf
add documents for model and trainer
marscrazy May 25, 2022
61807f7
update docs
ZhaodongYan1 May 25, 2022
ab2a4b1
Merge branch 'model_build_predfix_tuning' into doc_builder_docs
ZhaodongYan1 May 25, 2022
16050c2
updated GLM performance
ZhaodongYan1 May 25, 2022
2a53e93
derge branch 'master' into doc_builder_docs
ZhaodongYan1 May 25, 2022
7463879
added a document for task examples
ZhaodongYan1 May 26, 2022
f632a0d
fixed bugs in docs
ZhaodongYan1 May 26, 2022
29724c1
updated glm docs
ZhaodongYan1 May 26, 2022
b9a03d2
Merge branch 'add_docs' into doc_builder_docs
ZhaodongYan1 May 26, 2022
22bbef5
Merge branch 'document_model_trainer' into doc_builder_docs
ZhaodongYan1 May 26, 2022
b082c49
adde superglue results for GLM
ZhaodongYan1 May 26, 2022
8720688
fixed some errors in docs
ZhaodongYan1 May 26, 2022
7761a89
added prompt leaning and dataset and unified tutorial names
ZhaodongYan1 May 26, 2022
2ea4594
fixed some errors
ZhaodongYan1 May 26, 2022
12896f5
fixed some errors
ZhaodongYan1 May 26, 2022
25d116f
Add files via upload
xuanricheng May 26, 2022
fb94429
Update GLM.md
xuanricheng May 26, 2022
c1326b6
Merge pull request #15 from BAAI-Open/xuan-patch-1
Anhforth May 26, 2022
3dbc6b1
updated toturial algorithms doc
ZhaodongYan1 May 26, 2022
9c34b57
reorganized the chinese docs
ZhaodongYan1 May 26, 2022
9274279
fix bugs for glm-10b-en & t5-11b, fix bugs in checkpoint
marscrazy May 26, 2022
cc1684a
updatde Chinese GLM docs
ZhaodongYan1 May 26, 2022
d11142c
Create TUTORIAL_4_TRAINER_eng.md
xuanricheng May 26, 2022
9d80d0d
Create TUTORIAL_2_DATASET_eng.md
xuanricheng May 26, 2022
2696d45
Create TUTORIAL_3_MODEL_eng.md
xuanricheng May 26, 2022
8fa5655
translated the superglue and clue example docs
ZhaodongYan1 May 27, 2022
e794df0
add activate checkpoint in config
marscrazy May 27, 2022
5419ede
add install from with pip
marscrazy May 16, 2022
ba31301
Merge branch 'fix_bugs_for_10b_models' of https://github.com/BAAI-Ope…
marscrazy May 27, 2022
e5ffba1
merge changes on docs
marscrazy May 27, 2022
18e5a33
Update glm_model.py
marscrazy May 27, 2022
26fbb85
Merge pull request #17 from BAAI-Open/fix_bugs_for_10b_models
Anhforth May 27, 2022
e7f8d8d
fixed the bug:no PromptSpell
ZhaodongYan1 May 27, 2022
126b9c7
makes docs and link consistent
ZhaodongYan1 May 27, 2022
8aeeddb
Merge pull request #16 from BAAI-Open/xuan-patch-1
Anhforth May 27, 2022
8c64639
deleted unused part in doc_zh
ZhaodongYan1 May 27, 2022
c7997e7
fix bugs
920232796 May 28, 2022
598af04
Merge pull request #19 from BAAI-Open/fix_bugs_for_10b_models_xzh
marscrazy May 28, 2022
2a8a3a7
fix bugs in readme
marscrazy May 28, 2022
e8aa473
Merge pull request #20 from BAAI-Open/fix_document_lg
marscrazy May 28, 2022
e815403
fix warning in formating
marscrazy May 28, 2022
e5938a9
update branch
marscrazy May 28, 2022
69f97fc
fremove device in train_10b_clue.py
marscrazy May 28, 2022
6c1aede
fix bug in activate_chekckpiont function of bert_model
marscrazy May 28, 2022
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
89 changes: 89 additions & 0 deletions CLA.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
# The Contributor License Agreement

The [Cloud Native Computing Foundation](https://www.cncf.io) (CNCF) defines
the legal status of the contributed code in two different types of _Contributor License Agreements_
(CLAs), [individual contributors](https://github.com/cncf/cla/blob/master/individual-cla.pdf) and [corporations](https://github.com/cncf/cla/blob/master/corporate-cla.pdf).

FlagAI can only accept original source code from CLA signatories.


It is important to read and understand this legal agreement.

## How do I sign?

After creating your first Pull Request the linux-foundation-easycla bot will respond with information regarding your CLA status along with a link to sign the CLA.

<img width="1065" alt="EasyCLA bot" src="https://user-images.githubusercontent.com/69111235/152226443-f6fe61ee-0e92-46c5-b6ea-c0deb718a585.png">

#### 1. Authorize EasyCLA to read some of your GitHub information

<img width="554" alt="GitHub EasyCLA Authorization" src="https://user-images.githubusercontent.com/69111235/152228712-7d22f9d0-9f3c-4226-9ee0-bacba4b47725.png">

Click on the "Please click here to be authorized" link to navigate to the GitHub Authorize Linux Foundation: EasyCLA page. Then click Authorize LF-Engineering to give the Linux Foundation read-only access to list the email addresses associated with your GitHub account.

#### 2. Select from the two types of contributor

<img width="1407" alt="EasyCLA" src="https://user-images.githubusercontent.com/69111235/152224818-1246453a-b086-4a57-9d14-c10d62ad438f.png">


After authorizing EasyCLA, you will be redirected to a page to identify which type of contributor you are.
Select the most appropriate option:
* Individual Contributor: You are contributing as yourself, and not as part of another organization.
* Corporate Contributor: You are contributing on behalf of your employer or other organization.

#### 3. Sign the CLA

Once you select the type of contributor, proceed to Sign the CLA and follow the instructions to complete the signing process through DocuSign.

**Ensure your GitHub e-mail address matches e-mail address used to sign CLA**

After you have filled out the information, Click "Finish" and you will be redirected back to your Pull Request.

#### 4. Look for an email indicating successful signup.

> Hello,
>
> This is a notification email from EasyCLA regarding the project Cloud Native Computing > Foundation (CNCF).
>
> The CLA has now been signed. You can download the signed CLA as a PDF here.
>
> If you need help or have questions about EasyCLA, you can read the documentation or reach out to us for support.
>
> Thanks,
> EasyCLA Support Team



#### 5. Validate your CLA

Once you are redirected back to your GitHub Pull Request, reply with a comment `/easycla` to update the CLA status of your PR.


## Changing your Affiliation

If you've changed employers and still contribute to Kubernetes, your affiliation
needs to be updated. The Cloud Native Computing Foundation uses [gitdm](https://github.com/cncf/gitdm)
to track who is contributing and from where. Create a pull request on the [gitdm](https://github.com/cncf/gitdm)
repository with a change to the corresponding developer affiliation text file.
Your entry should look similar to this:

```
Jorge O. Castro*: jorge!heptio.com, jorge!ubuntu.com, jorge.castro!gmail.com
Heptio
Canonical until 2017-03-31
```

## Troubleshooting

If you encounter any problems signing the CLA and need further assistance, log a ticket by clicking on the link [please submit a support request ticket](https://jira.linuxfoundation.org/plugins/servlet/theme/portal/4) from the EasyCLA bot's response. Someone from the CNCF will respond to your ticket to help.

Should you have any issues using the LF Support Site, send a message to the
backup e-mail support address <login-issues@jira.linuxfoundation.org>

## Setting up the CNCF CLA check

If you are a Kubernetes GitHub organization or repo owner and would like to setup
the Linux Foundation CNCF CLA check for your repositories, [read the docs on setting up the CNCF CLA check](/github-management/setting-up-cla-check.md)


[Linux Foundation Support Site]: https://support.linuxfoundation.org/
17 changes: 8 additions & 9 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,9 @@ side, please stick to the following process:
3. If we decide your concern needs code changes, we would be happy to accept a pull request. Please consider the
commit guidelines below.

## Sign the CLA

Before you can contribute to FlagAI, you will need to sign the [Contributor License Agreement](CLA.md).

## Git Commit Guidelines

Expand All @@ -34,17 +37,13 @@ pip install -r requirements.txt
```

### tests



To run all basic tests execute:
```bash
python test.py
Install `pytest` for testing
```

To check the test results in
pip install pytest
```
tests/test_report
To run all basic tests execute:
```bash
pytest
```

### code formatting
Expand Down
52 changes: 25 additions & 27 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,16 +8,16 @@

FlagAI (Fast LArge-scale General AI models) is an fast, easy-to-use and extensible toolkit for large-scale model. Our goal is to support training, fine-tuning, and deployment of large-scale models on various downstream tasks with multi-modality. Currently, we are focusing on NLP models and tasks. In near futher, we will support for other modalities.

* Now it supports GLM, BERT, RoBERTa, GPT2, T5, and models from Huggingface Transformers.
* Now it supports **WuDao GLM** with a maximum of 10 billion parameters (see [Introduction to GLM](/docs/GLM.md)). It also supports **BERT**, **RoBERTa**, **GPT2**, **T5**, and models from Huggingface Transformers.

* It provides APIs to quickly download and use those pre-trained models on a given text, fine-tune them on your own datasets, and then share them with the community on our model hub.
* It provides APIs to quickly download and use those pre-trained models on a given text, fine-tune them on widely-used datasets collected from [SuperGLUE](https://super.gluebenchmark.com/) and [CLUE](https://github.com/CLUEbenchmark/CLUE) benchmarks, and then share them with the community on our model hub. It also provides [prompt-learning](/docs/TUTORIAL_7_PROMPT_LERANING.md) toolkit for few shot tasks.

* These models can be applied to (Chinese/English) Text, for tasks like text classification, information extraction, question answering, summarization, and text generation.

* FlagAI is backed by the three most popular data/model parallel libraries — PyTorch/Deepspeed/Megatron-LM — with seamless integration between them. Users can parallel their training/testing process with less than ten lines of code.
* FlagAI is backed by the three most popular data/model parallel libraries — [PyTorch](https://pytorch.org/)/[Deepspeed](https://www.deepspeed.ai/)/[Megatron-LM](https://github.com/NVIDIA/Megatron-LM) — with seamless integration between them. Users can parallel their training/testing process with less than ten lines of code.


The code is partially based on [Transformers](https://github.com/huggingface/transformers) and [DeepSpeedExamples](https://github.com/microsoft/DeepSpeedExamples).
The code is partially based on [GLM](https://github.com/THUDM/GLM), [Transformers](https://github.com/huggingface/transformers) and [DeepSpeedExamples](https://github.com/microsoft/DeepSpeedExamples).


<!-- toc -->
Expand Down Expand Up @@ -114,13 +114,17 @@ for text in test_data:
```

## Pretrained Models and examples
* [Poetry generation with GLM-large-ch](docs/TUTORIAL_9_GLM_EXAMPLE_PEOTRY_GENERATION.md)
* [Title Generation with RoBerta-WWM ](/docs/TUTORIAL_10_BERT_EXAMPLE_TITLE_GENERATION.md)
* [Semantic Matching with RoBerta-WWM](/docs/TUTORIAL_11_BERT_EXAMPLE_SEMANTIC_MATCHING.md)
* [NER with RoBerta-WWM](/docs/TUTORIAL_14_BERT_EXAMPLE_NER.md)
* [Writing with GPT-2](/docs/TUTORIAL_15_GPT2_WRITING.md)
* [Title generation with T5](/docs/TUTORIAL_16_T5_EXAMPLE_TITLE_GENERATION.md)
* [Supported tasks](/docs/AllSupportedTasks.md)

* [Blank_Filling_QA with GLM ](/docs/TUTORIAL_11_GLM_BLANK_FILLING_QA.md)
* [Title Generation with GLM ](/docs/TUTORIAL_12_GLM_EXAMPLE_TITLE_GENERATION.md)
* [Poetry generation with GLM-large-ch](docs/TUTORIAL_13_GLM_EXAMPLE_PEOTRY_GENERATION.md)
* [Using huggingface's t5-11b & tricks ](docs/TUTORIAL_14_HUGGINGFACE_T5.md)
* [Title Generation with RoBerta-WWM](/docs/TUTORIAL_15_BERT_EXAMPLE_TITLE_GENERATION.md)
* [Semantic Matching with RoBerta-WWM](/docs/TUTORIAL_16_BERT_EXAMPLE_SEMANTIC_MATCHING.md)
* [NER with RoBerta-WWM](/docs/TUTORIAL_17_BERT_EXAMPLE_NER.md)
* [Writing with GPT-2](/docs/TUTORIAL_18_GPT2_WRITING.md)
* [Title generation with T5](/docs/TUTORIAL_19_T5_EXAMPLE_TITLE_GENERATION.md)
* [Supported tasks](/docs/TUTORIAL_20_SUPPORTED_TASKS.md)


This session explains how the base NLP classes work, how you can load pre-trained models to tag your
Expand All @@ -131,22 +135,16 @@ language models, sequence labeling models, and text classification models. Let u

## Tutorials
We provide a set of quick tutorials to get you started with the library:

* [Tutorial 1: Basics](docs/TUTORIAL_1_BASICS.md)
* [Tutorial 2: Project structure](docs/TUTORIAL_2_PROJECT_STRUCTURE.md)
* [Tutorial 3: Supported tokenizers](docs/TUTORIAL_3_TOKENIZER.md)
* [Tutorial 4: Supported datasets](docs/TUTORIAL_4_DATASET.md)
* [Tutorial 5: Supported models](https://model.baai.ac.cn/models)
* [Tutorial 6: Training a model](docs/TUTORIAL_8_TRAINING.md)
* [Tutorial 7: AutoLoader](docs/TUTORIAL_12_INSTRUCTIONS_FOR_AutoLoader.md)
* [Tutorial 8: Predictor](docs/TUTORIAL_13_INSTRUCTIONS_FOR_PREDICTOR.md)

## Learn More About FlagAI
* [Datasets: supported datasets & PET integration.](docs/APPENDIX_TASK.md)
* [Setup enviroments for data/model parallel](docs/EnvironmentSetup.md)
* [Three types of generation](docs/Seq2seqMethod.md)
* [Using huggingface's t5-3b & tricks ](docs/Huggingface_t5.md)
* [Transform a model into Megatron-LM version](docs/ChangeToMegatron.md)
* [Tutorial 1: How to construct and use Tokenizer](/docs/TUTORIAL_1_TOKENIZER.md)
* [Tutorial 2: Dataset Preprocessing Pipeline](/docs/TUTORIAL_2_DATASET.md)
* [Tutorial 3: Major Function of Model Module](/docs/TUTORIAL_3_MODEL.md)
* [Tutorial 4: Customize trainer for model and data-parallel training](/docs/TUTORIAL_4_TRAINER.md)
* [Tutorial 5: Simplify model and tokenizer Initialization by Using Autoloader](/docs/TUTORIAL_5_INSTRUCTIONS_FOR_AutoLoader.md)
* [Tutorial 6: Use off-the-shelf inference Algorithms with Predictor](/docs/TUTORIAL_6_INSTRUCTIONS_FOR_PREDICTOR.md)
* [Tutorial 7: Use FlagAI prompt-learning tool-kit to improve performance on SuperGLUE](/docs/TUTORIAL_7_PROMPT_LERANING.md)
* [Tutorial 8: Setup environment for training models with multi-machine](/docs/TUTORIAL_8_ENVIRONMENT_SETUP.md)
* [Tutorial 9: Text generation with encoder/decoder/encoder-decoder models](/docs/TUTORIAL_9_SEQ2SEQ_METHOD.md)
* [Tutorial 10: How to transform a customized model into a megatron-LM-style parallel model](/docs/TUTORIAL_10_MEGATRON.md)

## Contributing

Expand Down
54 changes: 26 additions & 28 deletions README_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,19 +5,19 @@

--------------------------------------------------------------------------------

FlagAI 是一个快速、易于使用和可扩展的大型模型工具包。 我们的目标是支持在多模态的各种下游任务上训练、微调和部署大规模模型。 目前,我们专注于 NLP 模型和任务。 在不久的将来,我们将支持其他模态。
FlagAI 是一个快速、易于使用和可扩展的大模型工具包。 我们的目标是支持在多模态的各种下游任务上训练、微调和部署大规模模型。 目前,我们专注于 NLP 模型和任务。 在不久的将来,我们将支持其他模态。
<br><br>

* 现在它支持 GLMBERTRoBERTaGPT2、T5 模型和 Huggingface Transformers 的模型。
* 现在它支持最高百亿参数的**WUDAO GLM**(详见[GLM介绍](/doc_zh/GLM.md))。它同时也支持**BERT**、**RoBERTa**、**GPT2**、**T5** 模型和 Huggingface Transformers 的模型。

* 它提供 API 以快速下载并在给定(中/英文)文本上使用这些预训练模型,在您自己的数据集上对其进行微调,然后在我们的模型中心与社区共享它们。
* 它提供 API 以快速下载并在给定(中/英文)文本上使用这些预训练模型,在您自己的数据集上对其进行微调(fine-tuning)或者应用[提示学习(prompt-tuning)](/doc_zh/TUTORIAL_7_PROMPT_LERANING.md),然后在我们的模型中心与社区共享它们。

* 这些模型可以应用于文本,用于文本分类、信息提取、问答、摘要、文本生成等任务,尤其是中文。

* FlagAI 由三个最流行的数据/模型并行库(PyTorch/Deepspeed/Megatron-LM)提供支持,它们之间实现了无缝集成。 你可以用不到十行代码来并行你的训练/测试过程。
* FlagAI 由三个最流行的数据/模型并行库([PyTorch](https://pytorch.org/)/[Deepspeed](https://www.deepspeed.ai/)/[Megatron-LM](https://github.com/NVIDIA/Megatron-LM))提供支持,它们之间实现了无缝集成。 你可以用不到十行代码来并行你的训练/测试过程。


本项目的部分代码基于[Transformers](https://github.com/huggingface/transformers) 和 [DeepSpeedExamples](https://github.com/microsoft/DeepSpeedExamples).
本项目的部分代码基于[GLM](https://github.com/THUDM/GLM),[Transformers](https://github.com/huggingface/transformers) 和 [DeepSpeedExamples](https://github.com/microsoft/DeepSpeedExamples).

<!-- toc -->

Expand Down Expand Up @@ -181,36 +181,34 @@ for text_pair in test_data:
```

# 预训练模型以及样例
* [RoBERTa-base-ch用于标题生成](doc_zh/TUTORIAL_10_BERT_EXAMPLE_TITLE_GENERATION.md)
* [RoBERTa-base-ch用于语义相似度匹配](doc_zh/TUTORIAL_11_BERT_EXAMPLE_SEMANTIC_MATCHING.md)
* [GLM-large-ch用于诗歌生成](doc_zh/TUTORIAL_9_GLM_EXAMPLE_PEOTRY_GENERATION.md)
* [RoBERTa-base-ch用于命名实体识别](/docs/TUTORIAL_14_BERT_EXAMPLE_NER.md)
* [GPT-2用于文本续写](/docs/TUTORIAL_15_GPT2_WRITING.md)
* [T5用于标题生成](/docs/TUTORIAL_16_T5_EXAMPLE_TITLE_GENERATION.md)
* [所有支持的任务](docs/AllSupportedTasks.md)
* [GLM-large-ch用户完形填空问答](/doc_zh/TUTORIAL_11_GLM_BLANK_FILLING_QA.md)
* [GLM-large-ch用于诗歌生成](doc_zh/TUTORIAL_13_GLM_EXAMPLE_PEOTRY_GENERATION.md)
* [GLM-large-ch用于标题生成](doc_zh/TUTORIAL_12_GLM_EXAMPLE_TITLE_GENERATION.md)
* [对 huggingface t5-11b 模型的支持 以及加速的tricks](doc_zh/TUTORIAL_14_HUGGINGFACE_T5.md)
* [RoBERTa-base-ch用于标题生成](doc_zh/TUTORIAL_15_BERT_EXAMPLE_TITLE_GENERATION.md)
* [RoBERTa-base-ch用于语义相似度匹配](doc_zh/TUTORIAL_16_BERT_EXAMPLE_SEMANTIC_MATCHING.md)
* [RoBERTa-base-ch用于命名实体识别](/doc_zh/TUTORIAL_17_BERT_EXAMPLE_NER.md)
* [GPT-2用于文本续写](/doc_zh/TUTORIAL_18_GPT2_WRITING.md)
* [T5用于标题生成](/doc_zh/TUTORIAL_19_T5_EXAMPLE_TITLE_GENERATION.md)
* [所有支持的任务](doc_zh/TUTORIAL_20_SUPPORTED_TASKS.md)


本节解释了本项目中基础NLP类是如何工作的,如何加载预先训练的模型来标记您的文本,如何使用不同的词或文档嵌入来得到表示,以及如何训练自己的语言模型、序列标注模型和文本分类模型。


# 教程
我们提供了一组教程来帮助您快速上手使用本库:
* [教程 1: 基础知识](doc_zh/TUTORIAL_1_BASICS.md)
* [教程 2: 项目结构](doc_zh/TUTORIAL_2_PROJECT_STRUCTURE.md)
* [教程 3: 项目支持的分词器](doc_zh/TUTORIAL_3_TOKENIZER.md)
* [教程 4: 项目支持的数据集](doc_zh/TUTORIAL_4_DATASET.md)
* [教程 5: 项目支持的模型](https://model.baai.ac.cn/models)
* [教程 6: 训练一个模型](doc_zh/TUTORIAL_8_TRAINING.md)
* [教程 7: AutoLoader工具](doc_zh/TUTORIAL_12_INSTRUCTIONS_FOR_AutoLoader.md)
* [教程 8: Predictor工具](doc_zh/TUTORIAL_13_INSTRUCTIONS_FOR_PREDICTOR.md)


# 了解更多关于FlagAI
* [数据集:支持的数据集和 `PET` 集成](doc_zh/APPENDIX_TASK.md)
* [数据/模型并行的环境设置](doc_zh/EnvironmentSetup.md)
* [三种不同的生成方式](doc_zh/Seq2seqMethod.md)
* [对 huggingface t5-3b 模型的支持 以及加速的tricks](doc_zh/Huggingface_t5.md)
* [转化一个模型为Megatron-LM的模型并行版本](doc_zh/ChangeToMegatron.md)
* [Tutorial 1: 构建和应用分词器](/doc_zh/TUTORIAL_1_TOKENIZER.md)
* [Tutorial 2: 数据集预处理流程](/doc_zh/TUTORIAL_2_DATASET.md)
* [Tutorial 3: 模型的主要功能及相关结构](/doc_zh/TUTORIAL_3_MODEL.md)
* [Tutorial 4: 模型训练(支持并行化)](/doc_zh/TUTORIAL_4_TRAINER.md)
* [Tutorial 5: 使用AutoLoader工具快速构建模型](/doc_zh/TUTORIAL_5_INSTRUCTIONS_FOR_AutoLoader.md)
* [Tutorial 6: 使用Predictor工具进行预测](/doc_zh/TUTORIAL_6_INSTRUCTIONS_FOR_PREDICTOR.md)
* [Tutorial 7: FlagAI提示学习功能](/doc_zh/TUTORIAL_7_PROMPT_LERANING.md)
* [Tutorial 8: 数据/模型并行的环境设置](/doc_zh/TUTORIAL_8_ENVIRONMENT_SETUP.md)
* [Tutorial 9: 使用**编码器/解码器/编解码**器模型进行文本生成](/doc_zh/TUTORIAL_9_SEQ2SEQ_METHOD.md)
* [Tutorial 10: 转化一个模型为Megatron-LM的模型并行版本](/doc_zh/TUTORIAL_10_MEGATRON.md)


# 贡献代码
感谢您对贡献的兴趣! 参与的方式有很多; 从我们的[贡献者指南](CONTRIBUTING.md) 开始,然后检查这些[未解决的问题](https://github.com/BAAI-WuDao/Sailing/issues)以执行特定任务。
Expand Down
Loading