Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add bminf #238

Merged
merged 23 commits into from
Mar 2, 2023
2 changes: 1 addition & 1 deletion doc_zh/TUTORIAL_15_BERT_EXAMPLE_TITLE_GENERATION.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@
### 1. 数据加载
样例数据位于 /examples/bert_title_generation/data/

需要在 ```trianer.py```文件中定义数据读取过程,例如:
需要在 ```trainer.py```文件中定义数据读取过程,例如:
```python
def read_file():
src = []
Expand Down
2 changes: 1 addition & 1 deletion doc_zh/TUTORIAL_3_MODEL.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
## From_pretrain

`From_pretrain` 函数用于加载模型。同一个模型结构的模型可以用同一个class进行加载,比如`BERT-base-ch` 和`Roberta-base-ch`模型都能用`BertModel`这个`Class`进行加载。`From_pretrain`为了数据/模型并行的模型加载进行了特定优化,避免重复下载导致的资源浪费。
通过调用`ClassName.from_pretrian()`来进行加载.
通过调用`ClassName.from_pretrain()`来进行加载.
### 从modelhub加载
现在我们支持从modelhub中下载[常用模型](#所有支持模型),可以直接通过`from_pretrain`下载模型配置文件`config.json`,模型权重`pytorch_model.bin`,以及字典文件`vocab.txt`。例子:
```python
Expand Down
2 changes: 1 addition & 1 deletion docs/TUTORIAL_3_MODEL.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ All supported models now support the three most common model types [encoder, dec

### load model from modelhub

By calling `ClassName.from_pretrian()` to load following [supported models](#all-supported-models), it will automatically download the model configuration file `config.json`, model weights `pytorch_model.bin`, and dictionary files `vocab .txt`.
By calling `ClassName.from_pretrain()` to load following [supported models](#all-supported-models), it will automatically download the model configuration file `config.json`, model weights `pytorch_model.bin`, and dictionary files `vocab .txt`.

```python
>>> # Downloading GLM-large-ch from modelhub
Expand Down
1 change: 0 additions & 1 deletion examples/bert_title_generation_english/train.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
import sys
import os
import torch
from torch.utils.data import Dataset
Expand Down
45 changes: 45 additions & 0 deletions examples/bminf_generate/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@

# BMInf

## 简介/Overview

BMInf is a low-resource inference package for large-scale pretrained language models.

BMInf supports running models with more than 10 billion parameters on a single NVIDIA GTX 1060 GPU in its minimum requirements. Running with better GPUs leads to better performance. In cases where the GPU memory supports the large model inference (such as V100 or A100), BMInf still has a significant performance improvement over the existing PyTorch implementation.

BMInf Github Repository address: https://github.com/OpenBMB/BMInf

BMInf (Big Model Inference) 是一个用于大规模预训练语言模型(pretrained language models, PLM)推理阶段的低资源工具包。

BMInf最低支持在NVIDIA GTX 1060单卡运行百亿大模型。在此基础上,使用更好的gpu运行会有更好的性能。在显存支持进行大模型推理的情况下(如V100或A100显卡),BMInf的实现较现有PyTorch版本仍有较大性能提升。

BMInf 仓库地址:https://github.com/OpenBMB/BMInf

## 应用/Application

在模型加载参数之后,使用如下代码来用BMInf转换模型

```Python
with torch.cuda.device(0):
model = bminf.wrapper(model, quantization=False, memory_limit=20 << 30)
```
The `quantization` parameter represents whether to use the model quantization technique, but if it is a generated class model, it needs to be set to `False`.

You can use the `memory_limit` parameter to set the maximum available storage, the unit is Mb.

`quantization`参数代表是否使用了模型量化的技巧,但如果是生成类模型,则需要设置成`False`

可以用`memory_limit`参数设置最大的可用存储,单位为Mb

如果`bminf.wrapper`不能很好的适配你的模型,你可以用以下的方法来进行手动适配。

* 将 `torch.nn.ModuleList` 替换为 `bminf.TransformerBlockList`.
```python
module_list = bminf.TransformerBlockList([
], [CUDA_DEVICE_INDEX])
```

* 将 `torch.nn.Linear` 替换为 `bminf.QuantizedLinear`.
```python
linear = bminf.QuantizedLinear(torch.nn.Linear(...))
```
35 changes: 35 additions & 0 deletions examples/bminf_generate/cpm1_generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
import torch
from flagai.auto_model.auto_loader import AutoLoader
from flagai.model.predictor.predictor import Predictor
import bminf
import time


if __name__ == '__main__':

text = '''默写古诗:
白日依山尽,黄河入海流。
床前明月光,'''

loader = AutoLoader(task_name="lm",
model_name="CPM-large-ch",
model_dir="./checkpoints",
device="cpu")

model = loader.get_model()
time_start=time.time()
with torch.cuda.device(0):
model = bminf.wrapper(model, quantization=False, memory_limit=20 << 30)
tokenizer = loader.get_tokenizer()

predictor = Predictor(model=model,
tokenizer=tokenizer,
)

out = predictor.predict_generate_randomsample(text,
top_p=0.9,
out_max_length=50)
time_end=time.time()
print('time cost',time_end-time_start,'s')

print(out)
37 changes: 37 additions & 0 deletions examples/bminf_generate/galactica_6.7b_generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@

from flagai.model.predictor.predictor import Predictor
from flagai.auto_model.auto_loader import AutoLoader
import torch
import bminf
import time
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


loader = AutoLoader(task_name="lm",
model_name="galactica-6.7b-en",
model_dir="./checkpoints/")

model = loader.get_model()
with torch.cuda.device(0):
model = bminf.wrapper(model, quantization=False, memory_limit=20 << 30)
model.to(device)
model.eval()
tokenizer = loader.get_tokenizer()
predictor = Predictor(model, tokenizer)
print("model loaded")
time_start=time.time()

text = "Please write a abstract about the computer vision. \n"
out = predictor.predict_generate_randomsample(text,
out_max_length=700,
top_k=50,
repetition_penalty=1.2,
temperature=0.7
)

time_end=time.time()
print('time cost',time_end-time_start,'s')
print(out)



35 changes: 35 additions & 0 deletions examples/bminf_generate/gpt2_generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
import torch
from flagai.auto_model.auto_loader import AutoLoader
from flagai.model.predictor.predictor import Predictor
import bminf
import time

if __name__ == '__main__':

loader = AutoLoader("seq2seq",
"GPT2-base-ch",
model_dir="./checkpoints/")
model = loader.get_model()
model = model.to('cpu')
tokenizer = loader.get_tokenizer()
time_start=time.time()
with torch.cuda.device(0):
model = bminf.wrapper(model, quantization=False, memory_limit=20 << 30)
predictor = Predictor(model, tokenizer)

text = "今天天气不错"

out_2 = predictor.predict_generate_randomsample(text,
input_max_length=512,
out_max_length=100,
repetition_penalty=1.5,
top_k=20,
top_p=0.8)

time_end=time.time()
print('time cost',time_end-time_start,'s')
# print(f"out_1 is {out_1}")
print(f"out_2 is {out_2}")
2 changes: 1 addition & 1 deletion examples/cpm3_generation/generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ def calc_banned_ngram_tokens(

return banned_tokens

# min_length_constriant
# min_length_constraint
def min_length_constraint(logits, cur_len, min_len, tokenizer):
# This enforcing a min-length by setting EOS probability to 0.
if cur_len <= min_len:
Expand Down
2 changes: 1 addition & 1 deletion examples/cpm3_pretrain/data_analyze.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
import json

fout = open('{}'.format('/sharefs/baai-mrnd/xw/cpm3_trian_data/cpm3_train_data.jsonl'), "w", encoding='utf-8')
fout = open('{}'.format('/sharefs/baai-mrnd/xw/cpm3_train_data/cpm3_train_data.jsonl'), "w", encoding='utf-8')
fin = open('{}'.format('/sharefs/webbrain-lijijie/data/CEPSUM/test_public.jsonl'), 'r', encoding='utf-8')

def random_mask(source: str):
Expand Down
2 changes: 1 addition & 1 deletion examples/cpm_1/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@

loader = AutoLoader(task_name="lm",
model_name="CPM-large-ch",
model_dir="./state_dict/")
model_dir="./checkpoints")

model = loader.get_model()
tokenizer = loader.get_tokenizer()
Expand Down
4 changes: 1 addition & 3 deletions examples/galactica/generate_galactica_1.3b.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,4 @@
repetition_penalty=1.2,
temperature=0.7
)
print(out)


print(out)
2 changes: 1 addition & 1 deletion examples/glm_blank_filling/glm_generate_samples.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,4 +43,4 @@
for t in text:
output = predictor.predict_generate_randomsample(
t, top_k=50, repetition_penalty=4.0, top_p=1.0)
print(t, '\n', output)
print(t, '\n', output)
3 changes: 1 addition & 2 deletions examples/glm_blank_filling/glm_generate_samples_en.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")

import torch
from flagai.model.glm_model import GLMModel
from flagai.data.tokenizer import Tokenizer
Expand All @@ -13,7 +12,7 @@
print('Generate Samples')

loader = AutoLoader(task_name='lm',
model_name='GLM-large-en-generation',
model_name='GLM-large-en',
only_download_config=False)
model = loader.get_model()
tokenizer = loader.get_tokenizer()
Expand Down
3 changes: 1 addition & 2 deletions examples/gpt2_title_generation/train_multi_gpu.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
# Copyright © 2022 BAAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License")
import sys
import os
import torch
from torch.utils.data import Dataset
Expand Down Expand Up @@ -39,7 +38,7 @@
cur_dir = os.path.dirname(os.path.abspath(__file__))
src_dir = cur_dir + '/data/train.src'
tgt_dir = cur_dir + '/data/train.tgt'
model_dir = "./state_dict/"
model_dir = "./checkpoints/"
os.makedirs(model_dir, exist_ok=True)
maxlen = 256

Expand Down
10 changes: 6 additions & 4 deletions examples/roberta_ner/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,13 @@

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")



task_name = "ner"
model_dir = "./state_dict/"
model_dir = "./checkpoints"

# Note "./checkpoints_ner/{}/mp_rank_00_model_states.pt", {} is a directory in the checkpoints_ner.
model_save_path = "./checkpoints_ner/3913/mp_rank_00_model_states.pt"
# model_save_path = "./checkpoints_ner/3913/mp_rank_00_model_states.pt"

target = ["O", "B-LOC", "I-LOC", "B-ORG", "I-ORG", "B-PER", "I-PER"]

Expand All @@ -25,8 +27,8 @@
tokenizer = auto_loader.get_tokenizer()

predictor = Predictor(model, tokenizer)
model.load_state_dict(
torch.load(model_save_path, map_location=device)["module"])
# model.load_state_dict(
# torch.load(model_save_path, map_location=device)["module"])

model.to(device)
model.eval()
Expand Down
2 changes: 1 addition & 1 deletion examples/roberta_ner/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def load_data(filename):
val_data = load_data(valid_path)
test_data = load_data(test_path)

print(f"trian_data is {len(train_data)}")
print(f"train_data is {len(train_data)}")
print(f"val_data is {len(val_data)}")
print(f"test_data is {len(test_data)}")
print(f"target is {target}")
Expand Down
2 changes: 1 addition & 1 deletion examples/roberta_ner/train_crf.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def load_data(filename):
val_data = load_data(valid_path)
test_data = load_data(test_path)

print(f"trian_data is {len(train_data)}")
print(f"train_data is {len(train_data)}")
print(f"val_data is {len(val_data)}")
print(f"test_data is {len(test_data)}")
print(f"target is {target}")
Expand Down
2 changes: 1 addition & 1 deletion examples/roberta_ner/train_global_pointer.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def load_data(filename):
val_data = load_data(valid_path)
test_data = load_data(test_path)

print(f"trian_data is {len(train_data)}")
print(f"train_data is {len(train_data)}")
print(f"val_data is {len(val_data)}")
print(f"test_data is {len(test_data)}")
print(f"target is {target}")
Expand Down
2 changes: 1 addition & 1 deletion examples/roberta_title_generation/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_dir = "./state_dict"
model_dir = "./checkpoints"

# Note "./checkpoints_seq2seq/{}/mp_rank_00_model_states.pt", {} is a directory in the checkpoints_seq2seq.
model_save_path = "./checkpoints_seq2seq/10/mp_rank_00_model_states.pt"
Expand Down
2 changes: 1 addition & 1 deletion examples/t5_title_generation/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from flagai.model.predictor.predictor import Predictor

if __name__ == '__main__':
loader = AutoLoader("title-generation", "T5-base-ch", model_dir="./state_dict/")
loader = AutoLoader("title-generation", "T5-base-ch", model_dir="./checkpoints")
model = loader.get_model()
tokenizer = loader.get_tokenizer()
predictor = Predictor(model, tokenizer)
Expand Down
3 changes: 2 additions & 1 deletion flagai/auto_model/auto_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ def __getattr__(self, name):
"cpm_lm": ("flagai.model.gpt2_model", "GPT2Model"),
"t5_seq2seq": ["flagai.model.t5_model", "T5Model"],
"t5_lm": ["flagai.model.t5_model", "T5Model"],
"t5_title-generation": ["flagai.model.t5_model", "T5Model"],
"alm_lm": ["flagai.model.alm_model", "ALMModel"],
"glm_lm": ["flagai.model.glm_model", "GLMModel"],
"glm_seq2seq": ["flagai.model.glm_model", "GLMForSeq2Seq"],
Expand All @@ -62,7 +63,7 @@ def __getattr__(self, name):
"swinv2_classification": ("flagai.model.vision.swinv2",
"SwinTransformerV2"),
"cpm3_lm": ("flagai.model.cpm3_model", "CPM3"),
"cpm3_trian": ("flagai.model.cpm3_trian_model", "CPM3"),
"cpm3_train": ("flagai.model.cpm3_train_model", "CPM3"),
"diffusion_text2img": ("flagai.model.mm.AltDiffusion", "LatentDiffusion"),
"altclip_txt_img_matching": ("flagai.model.mm.AltCLIP", "AltCLIP"),
"evaclip_txt_img_matching": ("flagai.model.mm.eva_clip_model", "EVA_CLIP"),
Expand Down
1 change: 0 additions & 1 deletion flagai/data/file_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
from hashlib import sha256
import sys
from io import open

import boto3
import requests
from botocore.exceptions import ClientError
Expand Down
1 change: 1 addition & 0 deletions flagai/data/tokenizer/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,5 +6,6 @@
from .bert.bert_tokenizer import BertWordPieceTokenizer
from .cpm_1.cpm1_tokenizer import CPMTokenizer
from .opt.opt_en_tokenizer import OPTTokenizer
from .t5.t5_pegasus_tokenizer import T5PegasusTokenizer
from .uni_tokenizer.tokenizer import Tokenizer
# from .uni_tokenizer.base_tokenizer import BaseTokenizer
2 changes: 1 addition & 1 deletion flagai/data/tokenizer/bert/bert_tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ def __init__(self, tokenizer_model_type=None, cache_dir=None):

self._command_tokens = [
CommandToken('pad', '[PAD]', self.get_specialid_from_text_tokenizer('pad')),
CommandToken('ENC', '[CLS]', self.get_specialid_from_text_tokenizer('cls')),
CommandToken('cls', '[CLS]', self.get_specialid_from_text_tokenizer('cls')),
CommandToken('MASK', '[MASK]',
self.get_specialid_from_text_tokenizer('mask')),
CommandToken('unk', '[UNK]', self.get_specialid_from_text_tokenizer('unk')),
Expand Down
2 changes: 1 addition & 1 deletion flagai/data/tokenizer/galactica/galactica_tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ def __init__(self, download_dir) -> None:

self._command_tokens = [
CommandToken('pad', '[PAD]', self.get_specialid_from_text_tokenizer('pad')),
CommandToken('ENC', '[CLS]', self.get_specialid_from_text_tokenizer('cls')),
CommandToken('cls', '[CLS]', self.get_specialid_from_text_tokenizer('cls')),
CommandToken('MASK', '[MASK]',
self.get_specialid_from_text_tokenizer('mask')),
CommandToken('unk', '[UNK]', self.get_specialid_from_text_tokenizer('unk')),
Expand Down
2 changes: 1 addition & 1 deletion flagai/data/tokenizer/opt/opt_en_tokenizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def __init__(self, tokenizer_model_type="facebook/opt-125m", cache_dir=None):

self._command_tokens = [
CommandToken('pad', '[PAD]', self.get_specialid_from_text_tokenizer('pad')),
CommandToken('ENC', '[CLS]', self.get_specialid_from_text_tokenizer('cls')),
CommandToken('cls', '[CLS]', self.get_specialid_from_text_tokenizer('cls')),
CommandToken('MASK', '[MASK]',
self.get_specialid_from_text_tokenizer('mask')),
CommandToken('unk', '[UNK]', self.get_specialid_from_text_tokenizer('unk')),
Expand Down
Loading