Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

stable diffusion stdcase #191

Merged
merged 8 commits into from
Aug 10, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions inference/benchmarks/stable_diffusion_v1_4/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
### 1. 推理数据集


### 2. 模型与权重

* 模型实现
* pytorch:transformers.UNet2DConditionalModel
* 权重下载
* pytorch:from_pretrained("CompViz/stable-diffusion-v1-4")

### 2. 软硬件配置与运行信息参考

#### 2.1 Nvidia A100

- ##### 硬件环境
- 机器、加速卡型号: NVIDIA_A100-SXM4-40GB
- 多机网络类型、带宽: InfiniBand,200Gb/s

- ##### 软件环境
- OS版本:Ubuntu 20.04
- OS kernel版本: 5.4.0-113-generic
- 加速卡驱动版本:470.129.06
- Docker 版本:20.10.16
- 训练框架版本:pytorch-2.1.0a0+4136153
- 依赖软件版本:
- cuda: 12.1

- 推理工具包

- TensorRT 8.6.1

- 其他说明

- 本case在大批尺寸情况下涉及到了张量超过4B的情况,因此在大批尺寸离线批推理场景下,不宜作为性能及MFU基准。

### 3. 运行情况

* 指标列表

| 指标名称 | 指标值索引 | 特殊说明 |
| ------------------ | ---------------- | -------------------------------------------- |
| 数据精度 | precision | 可选fp32/fp16 |
| 批尺寸 | bs | |
| 硬件存储使用 | mem | 通常称为“显存”,单位为GiB |
| 端到端时间 | e2e_time | 总时间+Perf初始化等时间 |
| 验证总吞吐量 | p_val_whole | 实际验证prompts数除以总验证时间 |
| 验证计算吞吐量 | p_val_core | 不包含IO部分耗时 |
| 推理总吞吐量 | p_infer_whole | 实际推理prompts数除以总推理时间 |
| **推理计算吞吐量** | **\*p_infer_core** | 不包含IO部分耗时 |
| **计算卡使用率** | **\*MFU** | model flops utilization |
| 推理结果 | CLIP Score(推理/验证) | 单位为text2img耦合度分数 |

* 指标值

| 推理工具 | precision | bs | e2e_time | p_val_whole | p_val_core | p_infer_whole | \*p_infer_core | \*MFU | CLIP Score | mem |
| ----------- | --------- | ---- | ---- | -------- | ----------- | ---------- | ------------- | ------------ | ----------- | ----------- |
| tensorrt | fp16 | 2 |1674.9 | 11.4 | 45.2 | 10.6 | 60.6 | 13.2% | 17.1/25.2 | 13.3/40.0 |
| tensorrt | fp32 | 2 | 1807.4 | 8.2 | 20.6 | 7.2 | 16.1 | 7.0% | 25.2/25.3 | 39.2/40.0 |
| null | fp16 | 16 | / | 11.7 | 60.7 | / | / | 13.2% | -/25.2 | 5.7/40.0 |
| null | fp32 | 8 | / | 9.3 | 27.3 | / | / | 11.9% | -/25.3 | 6.3/40.0 |
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
from .dataloader import build_dataloader
from .model import create_model
from .export import export_model
from .evaluator import evaluator
from .forward import model_forward, engine_forward
31 changes: 31 additions & 0 deletions inference/benchmarks/stable_diffusion_v1_4/pytorch/dataloader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
from torch.utils.data import DataLoader as dl
import torch
import json
import random


def build_dataset(config):

df = json.load(open(config.data_dir + "/" + config.prompts))["annotations"]
prompts = []
for item in df:
prompts.append(item["caption"])
dataset = [
item for item in prompts if len(item) < config.prompt_max_len - 2
]
random.seed(config.random_seed)
dataset = random.sample(dataset, config.prompt_samples)

return dataset


def build_dataloader(config):
dataset = build_dataset(config)
loader = dl(dataset,
batch_size=config.batch_size,
shuffle=False,
drop_last=True,
num_workers=config.num_workers,
pin_memory=True)

return loader
12 changes: 12 additions & 0 deletions inference/benchmarks/stable_diffusion_v1_4/pytorch/evaluator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
import torch


def evaluator(metric, image, prompt, config):
scores = []
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).round().astype("uint8")
image = torch.tensor(image)
for i in range(config.batch_size):
scores.append(float(metric(image[i], prompt[i])))
return scores
41 changes: 41 additions & 0 deletions inference/benchmarks/stable_diffusion_v1_4/pytorch/export.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
import torch
import os


def export_model(model, config):
if config.exist_onnx_path is not None:
return config.exist_onnx_path

filename = config.case + "_bs" + str(config.batch_size)
filename = filename + "_" + str(config.framework)
filename = filename + "_fp16" + str(config.fp16)
filename = "onnxs/" + filename + ".onnx"
onnx_path = config.perf_dir + "/" + filename

latent = torch.randn(config.batch_size * 2, config.in_channels,
config.height // config.scale_size,
config.width // config.scale_size).cuda().float()
t = torch.randn([]).cuda().int()
embed = torch.randn(config.batch_size * 2, config.prompt_max_len,
config.embed_hidden_size).cuda().float()

if config.fp16:
latent = latent.half()
embed = embed.half()

dummy_input = (latent, t, embed)

dir_onnx_path = os.path.dirname(onnx_path)
os.makedirs(dir_onnx_path, exist_ok=True)

with torch.no_grad():
torch.onnx.export(model,
dummy_input,
onnx_path,
verbose=False,
input_names=["input_0", "input_1", "input_2"],
output_names=["output_0"],
training=torch.onnx.TrainingMode.EVAL,
do_constant_folding=True)

return onnx_path
Loading