Skip to content

FlorSanders/RecogNYCe

Repository files navigation

RecogNYCe

Playing Geoguessr in NYC using deep learning superpowers.

The codebase consists of three notebooks:

  • scraping.ipynb: Construction of the RecogNYCe dataset.
  • training.ipynb: Training of the neural networks.
  • results.ipynb: Model evaluation, webapp log processing and result visualization.

The web application is also contained within this repository and can be found in the ./webapp directory.

In order to keep the repository lightweight, both the dataset and the model weights are distributed through Google Drive:

The complete folder structure for this project looks like.

.
├── data
│   └── all
│       └── ...
├── docker-compose.yml
├── figures
├── models
│   ├── cnn_benchmark.pth
│   ├── priors.npy
│   ├── regnet_5_alone.pth
│   ├── resnet18_20+5_cont.pth
│   ├── resnet18_places_5_-2_alone.pth
│   ├── resnet50_5_alone.pth
│   └── results
│       ├── accuracy.npy
│       ├── y_hat.npy
│       └── y.npy
├── nginx.conf
├── README.md
├── results.ipynb
├── scraping.ipynb
├── training.ipynb
├── utils
│   ├── geojson_utils.py
│   ├── gmaps_utils.py
│   ├── mapillary_utils.py
│   ├── model_utils.py
│   └── plot_utils.py
└── webapp
    └── ...

About

Geolocation of Images in NYC with Deep Neural Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages