Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support for lecun normal weight initialization #2311

Merged
merged 7 commits into from
Oct 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/src/reference/utilities.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ Flux.glorot_normal
Flux.kaiming_uniform
Flux.kaiming_normal
Flux.truncated_normal
Flux.lecun_normal
Flux.orthogonal
Flux.sparse_init
Flux.identity_init
Expand Down
1 change: 1 addition & 0 deletions src/Flux.jl
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,7 @@ export MPIBackend, NCCLBackend, DistributedUtils
kaiming_uniform,
kaiming_normal,
truncated_normal,
lecun_normal,
orthogonal,
sparse_init,
identity_init,
Expand Down
42 changes: 42 additions & 0 deletions src/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -248,6 +248,48 @@ truncated_normal(rng::AbstractRNG=default_rng(); init_kwargs...) = (dims...; kwa

ChainRulesCore.@non_differentiable truncated_normal(::Any...)

"""
lecun_normal([rng], size...) -> Array
lecun_normal([rng]; kw...) -> Function

Return an `Array{Float32}` of the given `size` containing random numbers drawn from a truncated normal
distribution centered on 0 with stddev `sqrt(1 / fan_in)`, where `fan_in` is the number of input units
in the weight tensor.

# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
julia> using Statistics

julia> round(std(Flux.lecun_normal(10, 1000)), digits=3)
0.032f0

julia> round(std(Flux.lecun_normal(1000, 10)), digits=3)
0.32f0

julia> round(std(Flux.lecun_normal(1000, 1000)), digits=3)
0.032f0

julia> Dense(10 => 1000, selu; init = Flux.lecun_normal())
Dense(10 => 1000, selu) # 11_000 parameters

julia> round(std(ans.weight), digits=3)
0.313f0
```

# References

[1] Lecun, Yann, et al. "Efficient backprop." Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 9-48.
"""
function lecun_normal(rng::AbstractRNG, dims::Integer...; gain::Real=1)
std = Float32(gain)*sqrt(1.0f0 / first(nfan(dims...))) # calculates the standard deviation based on the `fan_in` value
return truncated_normal(rng, dims...; mean=0, std=std)
end

lecun_normal(dims::Integer...; kwargs...) = lecun_normal(default_rng(), dims...; kwargs...)
lecun_normal(rng::AbstractRNG=default_rng(); init_kwargs...) = (dims...; kwargs...) -> lecun_normal(rng, dims...; init_kwargs..., kwargs...)

ChainRulesCore.@non_differentiable lecun_normal(::Any...)

"""
orthogonal([rng], size...; gain = 1) -> Array
orthogonal([rng]; kw...) -> Function
Expand Down
9 changes: 7 additions & 2 deletions test/utils.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
using Flux
using Flux: throttle, nfan, glorot_uniform, glorot_normal,
kaiming_normal, kaiming_uniform, orthogonal, truncated_normal,
kaiming_normal, kaiming_uniform, orthogonal, truncated_normal, lecun_normal,
sparse_init, identity_init, unstack, batch, unbatch,
unsqueeze, params, loadmodel!
using MLUtils
Expand Down Expand Up @@ -75,7 +75,7 @@ end
kaiming_uniform, kaiming_normal,
orthogonal,
sparse_init,
truncated_normal,
truncated_normal, lecun_normal,
identity_init,
Flux.rand32,
Flux.randn32,
Expand Down Expand Up @@ -192,6 +192,11 @@ end
end
end

@testset "lecun_normal" begin
@test std(Flux.lecun_normal(10, 1000)) ≈ 0.032f0 rtol=0.1
@test std(Flux.lecun_normal(1000, 10)) ≈ 0.317f0 rtol=0.1
end

@testset "Partial application" begin
partial_ku = kaiming_uniform(gain=1e9)
@test maximum(partial_ku(8, 8)) > 1e9 / 2
Expand Down
Loading